Acién FG, Gómez-Serrano C, Morales-Amaral MM, Fernández-Sevilla JM, Molina-Grima E (2016) Wastewater treatment using microalgae: How realistic a contribution might it be to significant urban wastewater treatment? Appl Microbiol Biotechnol 100:9013–9022. https://doi.org/10.1007/s00253-016-7835-7
Article CAS PubMed Google Scholar
Angelis S, Novak AC, Sydney EB, Soccol VT, Carvalho JC, Pandey A, Noseda MD, Tholozan JL, Lorquin J, Soccol CR (2012) Co-culture of microalgae, Cyanobacteria, and macromycetes for exopolysaccharides production: Process preliminary optimization and partial characterization. Appl Biochem Biotechnol 167:1092–1106. https://doi.org/10.1007/s12010-012-9642-7
Article CAS PubMed Google Scholar
Barten R, Kleisman M, D’Ermo GD, Nijveen H, Wijffels RH, Barbosa MJ (2022) Short-term physiologic response of the green microalga Picochlorum sp. (BPE23) to supra-optimal temperature. Sci Rep 12:3290. https://doi.org/10.1038/s41598-022-06954-6
Article CAS PubMed PubMed Central Google Scholar
Beacham TA, Sweet JB, Allen MJ (2017) Large scale cultivation of genetically modified microalgae: a new era for environmental risk assessment. Algal Res 25:90–100. https://doi.org/10.1016/j.algal.2017.04.028
Bhatt A, Khanchandani M, Rana MS, Prajapati SK (2022) Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. J Clean Prod 370:133456. https://doi.org/10.1016/j.jclepro.2022.133456
Brockmann D, Gérand Y, Park C, Milferstedt K, Hélias A, Hamelin J (2021) Wastewater treatment using oxygenic photogranule-based process has lower environmental impact than conventional activated sludge process. Bioresour Technol 319:124204. https://doi.org/10.1016/j.biortech.2020.124204
Article CAS PubMed Google Scholar
Chachuat B, Roche N, Latifi MA (2005) Long-term optimal aeration strategies for small-size alternating activated sludge treatment plants. Chem Eng Process 44:591–604. https://doi.org/10.1016/j.cep.2004.08.002
Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol 28:362–368. https://doi.org/10.1016/j.nbt.2011.01.004
Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC (2009) Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Mol Sci 10:518–532. https://doi.org/10.3390/ijms10020518
Article CAS PubMed PubMed Central Google Scholar
Choi KJ, Han TH, Yoo G, Cho MG, Hwang SJ (2017) Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J Civ Eng 22:3215–3221. https://doi.org/10.1007/s12205-017-0730-7
Dao GH, Wu GX, Wang XX, Zhang TY, Zhan XM, Hu HY (2018) Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Res 33:345–351. https://doi.org/10.1016/j.algal.2018.06.006
De-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948. https://doi.org/10.1016/s0043-1354(01)00522-x
Article CAS PubMed Google Scholar
Ge B, He J, Zhang Q, Wei Y, Xi L, Khan KU, Huang F (2019) Evaluation of various sulfides for enhanced photobiological H2 production by a dual-species co-culture system of Chlamydomonas reinhardtii and Thiomonas intermedia. Process Biochem 82:110–116. https://doi.org/10.1016/j.procbio.2019.03.028
Ghommem M, Hajj MR, Puri IK (2012) Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecol Modell 235–236:1–7. https://doi.org/10.1016/j.ecolmodel.2012.04.005
Grant MAA, Kazamia E, Cicuta P, Smith AG (2014) Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. ISME J 8:1418–1427. https://doi.org/10.1038/ismej.2014.9
Article CAS PubMed PubMed Central Google Scholar
Hariz HB, Takriff MS (2017) Palm oil mill effluent treatment and CO2 sequestration by using microalgae—Sustainable strategies for environmental protection. Environ Sci Pollut Res Int 24:20209–20240. https://doi.org/10.1007/s11356-017-9742-6
Article CAS PubMed Google Scholar
He H, Chen Y, Li X, Cheng Y, Yang C, Zeng G (2017) Influence of salinity on microorganisms in activated sludge processes: A review. Int Biodeterior Biodegradation 119:520–527. https://doi.org/10.1016/j.ibiod.2016.10.007
Ho NWY, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. In: Recent progress in bioconversion of lignocellulosics. Adv Biochem Eng Biotechnol. Springer, Berlin Heidelberg. Berlin, Heidelberg 65:163–192. https://doi.org/10.1007/3-540-49194-5_7
Kabir M, Habiba UE, Khan W, Shah A, Rahim S (2023) Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J King Saud Univ Sci 35:102693. https://doi.org/10.1016/j.jksus.2023.102693
Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570. https://doi.org/10.1146/annurev.arplant.50.1.539
Article CAS PubMed Google Scholar
Karitani Y, Yamada R, Matsumoto T, Ogino H (2024a) Improvement of cell growth in green algae Chlamydomonas reinhardtii through co-cultivation with yeast Saccharomyces cerevisiae. Biotechnol Lett 46:431–441. https://doi.org/10.1007/s10529-024-03483-2
Article CAS PubMed Google Scholar
Karitani Y, Yamada R, Matsumoto T, Ogino H (2024b) UV mutagenesis improves growth potential of green algae in a green algae–yeast co-culture system. Arch Microbiol 206:61. https://doi.org/10.1007/s00203-023-03796-2
Article CAS PubMed Google Scholar
Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476. https://doi.org/10.1111/j.1462-2920.2012.02733.x
Article CAS PubMed Google Scholar
Kitcha S, Cheirsilp B (2014) Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl Biochem Biotechnol 173:522–534. https://doi.org/10.1007/s12010-014-0859-5
Article CAS PubMed Google Scholar
Leng L, Li W, Chen J, Leng S, Chen J, Wei L, Peng H, Li J, Zhou W, Huang H (2021) Co-culture of fungi-microalgae consortium for wastewater treatment: a review. Bioresour Technol 330:125008. https://doi.org/10.1016/j.biortech.2021.125008
Article CAS PubMed Google Scholar
Li X, Huang S, Yu J, Wang Q, Wu S (2013) Improvement of hydrogen production of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria. Int J Hydrogen Energy 38:10779–10787. https://doi.org/10.1016/j.ijhydene.2013.02.102
Liang Z, Liu Y, Ge F, Xu Y, Tao N, Peng F, Wong M (2013) Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere 92:1383–1389. https://doi.org/10.1016/j.chemosphere.2013.05.014
Article CAS PubMed Google Scholar
Löwe H, Hobmeier K, Moos M, Kremling A, Pflüger-Grau K (2017) Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol Biofuels 10:190. https://doi.org/10.1186/s13068-017-0875-0
Article CAS PubMed PubMed Central Google Scholar
Mujtaba G, Rizwan M, Lee K (2016) Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol Bioprocess Eng 20:1114–1122. https://doi.org/10.1007/s12257-015-0421-5
Comments (0)