Multi-omics profiling reveals the molecular mechanism of Bifidobacterium animalis BB04 in co-culture with Wickerhamomyces anomalus Y-5 to induce bifidocin A synthesis

Amigoni L, Martegani E, Colombo S (2013) Lack of HXK2 induces localization of active Ras in Mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxidative Med Cell Longev 132:1–10. https://doi.org/10.1155/2013/678473

Article  CAS  Google Scholar 

Antoshina DV, Balandin SV, Ovchinnikova TV (2022) Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry-Moscow 87:1387–1403. https://doi.org/10.1134/S0006297922110165

Article  PubMed  CAS  Google Scholar 

Ariana M, Hamedi J (2017) Enhanced production of nisin by co-culture of Lactococcus lactis sub sp lactis and Yarrowia lipolytica in molasses based medium. Journal of Biotechnology 256:21–26. https://doi.org/10.1016/j.jbiotec.2017.07.009

Bu YS, Yang H, Li JX, Liu YX, Liu TJ, Gong PM, Zhang LM, Wang SM, Yi HX (2021) Comparative Metabolomics analyses of Plantaricin Q7 production by Lactobacillus plantarum Q7. J Agric Food Chem 69:10741–10748. https://doi.org/10.1021/acs.jafc.1c03533

Article  PubMed  CAS  Google Scholar 

Cao HJ, Gong H, Yu MN, Pan XY, Song TQ, Yu JJ, Qi ZQ, Du Y, Zhang RS, Liu YF (2024) The ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. Mol Plant Pathol 25(3):e13448. https://doi.org/10.1111/mpp.13448

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cardarelli S, Giorgi M, Poiana G, Biagioni S, Saliola M (2019) Metabolic role of cGMP in S. Cerevisiae: the murine phosphodiesterase-5 activity affects yeast cell proliferation by altering the cAMP/cGMP equilibrium. FEMS Yeast Res 19(3):foz016. https://doi.org/10.1093/femsyr/foz016

Article  PubMed  CAS  Google Scholar 

Chang CP, Lagitnay RBJS, Li TR, Lai WT, Derilo RC, Chuang DY (2023) Unleashing the influence of cAMP receptor protein: the master switch of bacteriocin export in Pectobacterium carotovorum subsp. Carotovorum. Int J Mol Sci 24(11):9752. https://doi.org/10.3390/ijms24119752

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chanos P, Mygind T (2016) Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 100:4297–4308. https://doi.org/10.1007/s00253-016-7486-8

Article  PubMed  CAS  Google Scholar 

Chen EJ, Kaiser CA (2002) Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:14837–14842. https://doi.org/10.1073/pnas.232591899

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen CN, Porubleva L, Shearer G, Svrakic M, Holden LG, Dover JL, Johnston M, Chitnis PR, Kohl DH (2023) Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae. Yeast 20:545–554. https://doi.org/10.1002/yea.979

Article  CAS  Google Scholar 

Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiolgy Reviews 38:254–299. https://doi.org/10.1111/1574-6976.12065

Article  CAS  Google Scholar 

Dai LF, Wang BJ, Wang T, Meyer EH, Kettel V, Hoffmann N, McFarlane HE, Li SL, Wu XN, Picard KL, Giavalisco P, Persson S, Zhang Y (2022) The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis. Proc Natl Acad Sci USA 119(38):e2122969119. https://doi.org/10.1073/pnas.2122969119

Article  PubMed  PubMed Central  CAS  Google Scholar 

De-Lucena RM, Elsztein C, Barros D, Souza RB, Pita WD, Paiva SDL, Morais MA (2015a) Genetic interaction between hog1 and slt2 genes in signalling the cellular stress caused by sulphuric acid in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 25:423–427. https://doi.org/10.1159/000443309

Article  PubMed  CAS  Google Scholar 

De-Lucena RM, Elsztein C, Pita WB, Souza RB, Junior SLP, Junior MA (2015b) Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress. Antonie Van Leeuwenhoek 108:1147–1160. https://doi.org/10.1007/s10482-015-0568-2

Article  PubMed  CAS  Google Scholar 

De-Melo HF, Bonini BM, Thevelein J, Simoes DA, Morais MA (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109:116–127. https://doi.org/10.1111/j.1365-2672.2009.04633.x

Article  PubMed  CAS  Google Scholar 

Deng YJ, Wang RD, Zhang YH, Li JR, Gooneratne R (2023) Effect of amino acids on Fusarium oxysporum growth and pathogenicity regulated by TORC1-Tap42 gene and related interaction protein analysis. Foods 12(9):1829. https://doi.org/10.3390/foods12091829

Article  PubMed  PubMed Central  CAS  Google Scholar 

Di-Cagno R, Angelis M, Coda R, Minervini F, Gobbetti M (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other Lactobacilli. Res Microbiol 160:358–366. https://doi.org/10.1016/j.resmic.2009.04.006

Article  PubMed  CAS  Google Scholar 

Fernández LT, Gomez JP, Bibb MJ (2015) A rel A -dependent regulatory cascade for auto-induction of microbisporicin production in Microbispora corallina: regulation of microbisporicin biosynthesis in M. corallina. Mol Microbiol 97:502–514. https://doi.org/10.1111/mmi.13046

Article  CAS  Google Scholar 

Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P (2024) The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. Microb Cell 11(1):90–105. https://doi.org/10.15698/mic2024.03.818

Article  PubMed  PubMed Central  CAS  Google Scholar 

Georis I, Fayyad M, Zaremba E (2022) Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 39(9):493–507. https://doi.org/10.1002/yea.3809

Article  PubMed  CAS  Google Scholar 

Ha E (2016) Escherichia coli-derived uracil increases the antibacterial activity and growth rate of Lactobacillus plantarum. J Microbiol Biotechnol 26:975–987. https://doi.org/10.4014/jmb.1601.01063

Article  PubMed  CAS  Google Scholar 

Han TQ, Liu YS, Ren DY, Niu HY, Zhang CC, Liu DQ, Xin XT, Zhang JM (2023) Effects of exogenous induction and co-culture on the production of the bacteriocin Lac-B23 from Lactiplantibacillus Plantarum J23. J Food Saf Qual 14(7):104–112. http://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2023.07.018

Google Scholar 

Harlé O, Falentin H, Niay J, Valence F, Courselaud C, Chuat V, Maillard MB, Guédon É, Deutsch SM, Thierry A (2020) Diversity of the metabolic profiles of a broad range of lactic acid bacteria in soy juice fermentation. Food Microbiol 89:1–11. https://doi.org/10.1016/j.fm.2019.103410

Article  CAS  Google Scholar 

Hong KQ, HouXY, Hao AL, Wang PF, Fu XM, Lv A, Dong J (2018) Truncation of Cyr1 promoter in industrial ethanol yeasts for improved ethanol yield in high temperature condition. Process Biochem 65:37–45. https://doi.org/10.1016/j.procbio.2017.10.008

Article  CAS  Google Scholar 

Hu WK, Liu JG, Zhang W, Wu JL, Yang ZB, Zhang R, Zeng XF (2023a) Multi-omics analysis reveals the microbial interactions of S. Cerevisiae and L. Plantarum on Suanyu, Chinese traditional fermented fish. Food Reasearch Int 174(1):113525. https://doi.org/10.1016/j.foodres.2023.113525

Article  CAS  Google Scholar 

Hu YZ, Dang M, Isah MB, Yakhkeshi S, Chen C, Zhang XY (2023b) Comparative analysis of muscle profiles in silky fowl and white Leghorn Chicken: insights from multi-omics and experimental approaches. LWT - Food Sci Technol 187:115364. https://doi.org/10.1016/j.lwt.2023.115364

Article  CAS  Google Scholar 

Huang XF, Zhang JL, Huang DP, Huang AS, Huang HT, Liu Q, Liu XH, Liao HL (2020) A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin combined with in vitro transcriptomics and proteomics. Int Immunopharmacol 86:106727. https://doi.org/10.1016/j.intimp.2020.106727

Article  PubMed  CAS  Google Scholar 

Jang MK, Yu KH, Kim NY, Lee OH, Shin JK, Jang JH, Lee S, Lee DG, Lee SH (2010) Improvement of antibacterial activities of bacteriocidal yeasts using the GPD promoter. Korean J Life Sci 20(6):934–939. http://doi.org/10.5352/JLS.2010.20.6.934

Article  Google Scholar 

Jimenez J, Bru S, Ribeiro M, Clotet J (2015) Live fast, die soon: cell cycle progression and lifespan in yeast cells. Microb Cell 2:62–67. https://doi.org/10.15698/mic2015.03.191

Article 

Comments (0)

No login
gif