Amigoni L, Martegani E, Colombo S (2013) Lack of HXK2 induces localization of active Ras in Mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxidative Med Cell Longev 132:1–10. https://doi.org/10.1155/2013/678473
Antoshina DV, Balandin SV, Ovchinnikova TV (2022) Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry-Moscow 87:1387–1403. https://doi.org/10.1134/S0006297922110165
Article PubMed CAS Google Scholar
Ariana M, Hamedi J (2017) Enhanced production of nisin by co-culture of Lactococcus lactis sub sp lactis and Yarrowia lipolytica in molasses based medium. Journal of Biotechnology 256:21–26. https://doi.org/10.1016/j.jbiotec.2017.07.009
Bu YS, Yang H, Li JX, Liu YX, Liu TJ, Gong PM, Zhang LM, Wang SM, Yi HX (2021) Comparative Metabolomics analyses of Plantaricin Q7 production by Lactobacillus plantarum Q7. J Agric Food Chem 69:10741–10748. https://doi.org/10.1021/acs.jafc.1c03533
Article PubMed CAS Google Scholar
Cao HJ, Gong H, Yu MN, Pan XY, Song TQ, Yu JJ, Qi ZQ, Du Y, Zhang RS, Liu YF (2024) The ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. Mol Plant Pathol 25(3):e13448. https://doi.org/10.1111/mpp.13448
Article PubMed PubMed Central CAS Google Scholar
Cardarelli S, Giorgi M, Poiana G, Biagioni S, Saliola M (2019) Metabolic role of cGMP in S. Cerevisiae: the murine phosphodiesterase-5 activity affects yeast cell proliferation by altering the cAMP/cGMP equilibrium. FEMS Yeast Res 19(3):foz016. https://doi.org/10.1093/femsyr/foz016
Article PubMed CAS Google Scholar
Chang CP, Lagitnay RBJS, Li TR, Lai WT, Derilo RC, Chuang DY (2023) Unleashing the influence of cAMP receptor protein: the master switch of bacteriocin export in Pectobacterium carotovorum subsp. Carotovorum. Int J Mol Sci 24(11):9752. https://doi.org/10.3390/ijms24119752
Article PubMed PubMed Central CAS Google Scholar
Chanos P, Mygind T (2016) Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 100:4297–4308. https://doi.org/10.1007/s00253-016-7486-8
Article PubMed CAS Google Scholar
Chen EJ, Kaiser CA (2002) Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:14837–14842. https://doi.org/10.1073/pnas.232591899
Article PubMed PubMed Central CAS Google Scholar
Chen CN, Porubleva L, Shearer G, Svrakic M, Holden LG, Dover JL, Johnston M, Chitnis PR, Kohl DH (2023) Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae. Yeast 20:545–554. https://doi.org/10.1002/yea.979
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiolgy Reviews 38:254–299. https://doi.org/10.1111/1574-6976.12065
Dai LF, Wang BJ, Wang T, Meyer EH, Kettel V, Hoffmann N, McFarlane HE, Li SL, Wu XN, Picard KL, Giavalisco P, Persson S, Zhang Y (2022) The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis. Proc Natl Acad Sci USA 119(38):e2122969119. https://doi.org/10.1073/pnas.2122969119
Article PubMed PubMed Central CAS Google Scholar
De-Lucena RM, Elsztein C, Barros D, Souza RB, Pita WD, Paiva SDL, Morais MA (2015a) Genetic interaction between hog1 and slt2 genes in signalling the cellular stress caused by sulphuric acid in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 25:423–427. https://doi.org/10.1159/000443309
Article PubMed CAS Google Scholar
De-Lucena RM, Elsztein C, Pita WB, Souza RB, Junior SLP, Junior MA (2015b) Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress. Antonie Van Leeuwenhoek 108:1147–1160. https://doi.org/10.1007/s10482-015-0568-2
Article PubMed CAS Google Scholar
De-Melo HF, Bonini BM, Thevelein J, Simoes DA, Morais MA (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109:116–127. https://doi.org/10.1111/j.1365-2672.2009.04633.x
Article PubMed CAS Google Scholar
Deng YJ, Wang RD, Zhang YH, Li JR, Gooneratne R (2023) Effect of amino acids on Fusarium oxysporum growth and pathogenicity regulated by TORC1-Tap42 gene and related interaction protein analysis. Foods 12(9):1829. https://doi.org/10.3390/foods12091829
Article PubMed PubMed Central CAS Google Scholar
Di-Cagno R, Angelis M, Coda R, Minervini F, Gobbetti M (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other Lactobacilli. Res Microbiol 160:358–366. https://doi.org/10.1016/j.resmic.2009.04.006
Article PubMed CAS Google Scholar
Fernández LT, Gomez JP, Bibb MJ (2015) A rel A -dependent regulatory cascade for auto-induction of microbisporicin production in Microbispora corallina: regulation of microbisporicin biosynthesis in M. corallina. Mol Microbiol 97:502–514. https://doi.org/10.1111/mmi.13046
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P (2024) The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. Microb Cell 11(1):90–105. https://doi.org/10.15698/mic2024.03.818
Article PubMed PubMed Central CAS Google Scholar
Georis I, Fayyad M, Zaremba E (2022) Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 39(9):493–507. https://doi.org/10.1002/yea.3809
Article PubMed CAS Google Scholar
Ha E (2016) Escherichia coli-derived uracil increases the antibacterial activity and growth rate of Lactobacillus plantarum. J Microbiol Biotechnol 26:975–987. https://doi.org/10.4014/jmb.1601.01063
Article PubMed CAS Google Scholar
Han TQ, Liu YS, Ren DY, Niu HY, Zhang CC, Liu DQ, Xin XT, Zhang JM (2023) Effects of exogenous induction and co-culture on the production of the bacteriocin Lac-B23 from Lactiplantibacillus Plantarum J23. J Food Saf Qual 14(7):104–112. http://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2023.07.018
Harlé O, Falentin H, Niay J, Valence F, Courselaud C, Chuat V, Maillard MB, Guédon É, Deutsch SM, Thierry A (2020) Diversity of the metabolic profiles of a broad range of lactic acid bacteria in soy juice fermentation. Food Microbiol 89:1–11. https://doi.org/10.1016/j.fm.2019.103410
Hong KQ, HouXY, Hao AL, Wang PF, Fu XM, Lv A, Dong J (2018) Truncation of Cyr1 promoter in industrial ethanol yeasts for improved ethanol yield in high temperature condition. Process Biochem 65:37–45. https://doi.org/10.1016/j.procbio.2017.10.008
Hu WK, Liu JG, Zhang W, Wu JL, Yang ZB, Zhang R, Zeng XF (2023a) Multi-omics analysis reveals the microbial interactions of S. Cerevisiae and L. Plantarum on Suanyu, Chinese traditional fermented fish. Food Reasearch Int 174(1):113525. https://doi.org/10.1016/j.foodres.2023.113525
Hu YZ, Dang M, Isah MB, Yakhkeshi S, Chen C, Zhang XY (2023b) Comparative analysis of muscle profiles in silky fowl and white Leghorn Chicken: insights from multi-omics and experimental approaches. LWT - Food Sci Technol 187:115364. https://doi.org/10.1016/j.lwt.2023.115364
Huang XF, Zhang JL, Huang DP, Huang AS, Huang HT, Liu Q, Liu XH, Liao HL (2020) A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin combined with in vitro transcriptomics and proteomics. Int Immunopharmacol 86:106727. https://doi.org/10.1016/j.intimp.2020.106727
Article PubMed CAS Google Scholar
Jang MK, Yu KH, Kim NY, Lee OH, Shin JK, Jang JH, Lee S, Lee DG, Lee SH (2010) Improvement of antibacterial activities of bacteriocidal yeasts using the GPD promoter. Korean J Life Sci 20(6):934–939. http://doi.org/10.5352/JLS.2010.20.6.934
Jimenez J, Bru S, Ribeiro M, Clotet J (2015) Live fast, die soon: cell cycle progression and lifespan in yeast cells. Microb Cell 2:62–67. https://doi.org/10.15698/mic2015.03.191
Comments (0)