Bläsi U, Young R (1996) Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21:675–682. https://doi.org/10.1046/j.1365-2958.1996.331395.x
Borujeni AE, Channarasappa AS, Salis HM (2014) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659. https://doi.org/10.1093/nar/gkt1139
Borujeni AE, Cetnar D, Farasat I, Smith A, Lundgren N, Salis HM (2017) Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Res 45:5437–5448. https://doi.org/10.1093/nar/gkx061
Brunel F, Thi VH, Pilaete MF, Davison J (1983) Transcription regulatory elements in the late region of bacteriophage T5 DNA. Nucleic Acids Res 11:7649–7658. https://doi.org/10.1093/nar/11.21.7649
Article CAS PubMed PubMed Central Google Scholar
Cahill J, Young R (2019) Phage lysis: multiple genes for multiple barriers. Adv Virus Res 103:33–70. https://doi.org/10.1016/bs.aivir.2018.09.003
Article CAS PubMed Google Scholar
Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37:554–557. https://doi.org/10.1111/1574-6976.12006
Article CAS PubMed Google Scholar
Chen Y, Young R (2016) The last r Locus unveiled: T4 RIII is a cytoplasmic antiholin. J Bacteriol 198:2448–2457. https://doi.org/10.1128/jb.00294-16
Article CAS PubMed PubMed Central Google Scholar
Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22:4953–4957. https://doi.org/10.1093/nar/22.23.4953
Article CAS PubMed PubMed Central Google Scholar
Chinnadurai G, McCorquodale DJ (1973) Requirement of a phage-induced 5’-exonuclease for the expression of late genes of bacteriophage T5. Proc Natl Acad Sci USA 70:3502–3505. https://doi.org/10.1073/pnas.70.12.3502
Article CAS PubMed PubMed Central Google Scholar
de Smit MH, van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672. https://doi.org/10.1073/pnas.87.19.7668
Article PubMed PubMed Central Google Scholar
de Smit MH, van Duin J (1994) Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J Mol Biol 235:173–184. https://doi.org/10.1016/s0022-2836(05)80024-5
Gentz R, Bujard H (1985) Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5. J Bacteriol 164:70–77. https://doi.org/10.1128/jb.164.1.70-77.1985
Article CAS PubMed PubMed Central Google Scholar
Horii T, Suzuki Y, Kobayashi M (2002) Characterization of a holin (HolNU3-1) in methicillin-resistant Staphylococcus aureus host. FEMS Immunol Med Microbiol 34:307–310. https://doi.org/10.1080/03079457.2013.805183
Article CAS PubMed Google Scholar
Hrzenjak A, Artl A, Knipping G, Kostner G, Sattler W, Malle E (2001) Silent mutations in secondary Shine-Dalgarno sequences in the cDNA of human serum amyloid A4 promotes expression of recombinant protein in Escherichia coli. Protein Eng 14:949–952. https://doi.org/10.1093/protein/14.12.949
Article CAS PubMed Google Scholar
Kovalenko AO, Chernyshov SV, Kutyshenko VP, Molochkov NV, Prokhorov DA, Odinokova IV, Mikoulinskaia GV (2019) Investigation of the calcium-induced activation of the bacteriophage T5 peptidoglycan hydrolase promoting host cell lysis. Metallomics 11:799–809. https://doi.org/10.1039/c9mt00020h
Article CAS PubMed Google Scholar
Leiva LE, Katz A (2022) Regulation of Leaderless mRNA translation in Bacteria. Microorganisms 10:723. https://doi.org/10.3390%2Fmicroorganisms10040723
Article CAS PubMed PubMed Central Google Scholar
Luke K, Radek A, Liu X, Campbell J, Uzan M, Haselkorn R, Kogan Y (2002) Microarray analysis of gene expression during bacteriophage T4 infection. Virology 299:182–191. https://doi.org/10.1006/viro.2002.1409
Article CAS PubMed Google Scholar
Masulis IS, Babaeva ZSh, Chernyshov SV, Ozoline ON (2015) Visualizing the activity of Escherichia coli divergent promoters and probing their dependence on superhelical density using dual-colour fluorescent reporter vector. Sci Rep 5:11449. https://doi.org/10.1038/srep11449
Article CAS PubMed PubMed Central Google Scholar
McCorquodale DJ, Warner HR (1988) Bacteriophage T5 and related phages. In: Calendar R (ed) The bacteriophages, the viruses. Springer, Boston, MA, pp 439–475
McCorquodale DJ, Chen CW, Joseph MK, Woychik R (1981) Modification of RNA polymerase from Escherichia coli by pre-early gene products of bacteriophage T5. J Virol 40:958–962. https://doi.org/10.1128/jvi.40.3.958-962.1981
Article CAS PubMed PubMed Central Google Scholar
Mikoulinskaia GV, Zimin AA, Feofanov SA, Miroshnikov AI (2004) Identification, cloning and expression of bacteriophage T5 dnk gene encoding a broad specificity deoxyribonucleoside monophosphate kinase (EC 2.7.4.13). Protein Exp Purif 33:166–175. https://doi.org/10.1016/j.pep.2003.07.006
Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA (2009) Identification and characterization of the metal ion-dependent L-alanoyl-D-glutamate peptidase encoded by bacteriophage T5. FEBS J 276:7329–7342. https://doi.org/10.1111/j.1742-4658.2009.07443.x
Article CAS PubMed Google Scholar
Nguyen HM, Kang C (2014) Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes. J Virol 88:2107–2115. https://doi.org/10.1128/jvi.03274-13
Article PubMed PubMed Central Google Scholar
Nishizawa A, Nakayama M, Uemura T, Fukuda Y, Kimura S (2010) Ribosome-binding site interference caused by Shine-Dalgarno-like nucleotide sequences in Escherichia coli cells. J Biochem 147:433–443. https://doi.org/10.1093/jb/mvp187
Article CAS PubMed Google Scholar
Palmer SR, Burne RA (2015) Post-transcriptional regulation by distal Shine-Dalgarno sequences in the grpe-dnak intergenic region of Streptococcus mutans. Mol Microbiol 98:302–317. https://doi.org/10.1111/mmi.13122
Article CAS PubMed PubMed Central Google Scholar
Payne KM, Hatfull GF (2012) Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS ONE 7:e34052. https://doi.org/10.1371%2Fjournal.pone.0034052
Article CAS PubMed PubMed Central Google Scholar
Pispa JP, Sirbasku DA, Buchanan JM (1971) Patterns of ribonucleic acid synthesis in T5-infected Escherichia coli. IV. Examination of the role of deoxyribonucleic acid replication. J Biol Chem 246:1658–1664. https://doi.org/10.1016/S0021-9258(18)62362-2
Article CAS PubMed Google Scholar
Pohane AA, Jain V (2015) Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiol (Reading) 161:2269–2276. https://doi.org/10.1099/mic.0.000190
Comments (0)