Bikfalvi A, da Costa CA, Avril T et al (2023) Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 9:9–27
Article CAS PubMed Google Scholar
Cai X, Miao J, Sun R et al (2021) Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer. Pharmacol Res 170:105701
Chen A, Jiang Y, Li Z et al (2021) Chitinase-3-like 1 protein complexes modulate macrophage-mediated immune suppression in glioblastoma. J Clin Invest 131:16
Chen Y, Mi Y, Zhang X et al (2019) Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res 38:402
Article CAS PubMed PubMed Central Google Scholar
Choudhary N, Osorio RC, Oh JY, Aghi MK (2023) Metabolic barriers to glioblastoma immunotherapy. Cancers (Basel) 15:5
Chung S, Sugimoto Y, Huang J, Zhang M (2023) Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells. ACS Appl Mater Interfaces 15:106–119
Article CAS PubMed Google Scholar
De Los Santos-Jiménez J, Rosales T, Ko B et al (2023) Metabolic adjustments following glutaminase inhibition by CB-839 in glioblastoma cell lines. Cancers (Basel) 15:2
Dunphy MPS, Harding JJ, Venneti S et al (2018) In vivo PET assay of tumor glutamine flux and metabolism: in-human trial of (18)F-(2S,4R)-4-fluoroglutamine. Radiology 287:667–675
Fang YJ, Wu M, Chen HN et al (2021) Carnosine suppresses human glioma cells under normoxic and hypoxic conditions partly via inhibiting glutamine metabolism. Acta Pharmacol Sin 42:767–779
Article CAS PubMed Google Scholar
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22
Article PubMed PubMed Central Google Scholar
Geeleher P, Cox N, Huang RS (2014) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 9:e107468
Article PubMed PubMed Central Google Scholar
Ge C, Zhu X, Niu X et al (2021) A transcriptome profile in gallbladder cancer based on annotation analysis of microarray studies. Mol Med Rep 23:1
Ghosh D, Ulasov IV, Chen L et al (2016) TGFβ-responsive HMOX1 Expression is associated with stemness and invasion in glioblastoma multiforme. Stem Cells 34:2276–2289
Article CAS PubMed Google Scholar
Gielen PR, Schulte BM, Kers-Rebel ED et al (2016) Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro Oncol 18:1253–1264
Article CAS PubMed PubMed Central Google Scholar
Gravendeel LA, Kouwenhoven MC, Gevaert O et al (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69:9065–9072
Article CAS PubMed Google Scholar
Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7
Article PubMed PubMed Central Google Scholar
Hoogstrate Y, Draaisma K, Ghisai SA et al (2023) Transcriptome analysis reveals tumor microenvironment changes in glioblastoma. Cancer Cell 41:678-692.e677
Article CAS PubMed Google Scholar
Hou K, Liu J, Du J et al (2021) Dihydroartemisinin prompts amplification of photodynamic therapy-induced reactive oxygen species to exhaust Na/H exchanger 1-mediated glioma cells invasion and migration. J Photochem Photobiol B 219:112192
Article CAS PubMed Google Scholar
Hu J, Yu A, Othmane B et al (2021) Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer. Theranostics 11:3089–3108
Article CAS PubMed PubMed Central Google Scholar
Ji X, Liu Z, Gao J et al (2023) N(6)-Methyladenosine-modified lncRNA LINREP promotes glioblastoma progression by recruiting the PTBP1/HuR complex. Cell Death Differ 30:54–68
Article CAS PubMed Google Scholar
Kim SH, Kang SH, Kang BS (2016) Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma. Nutr Res Pract 10:393–397
Article CAS PubMed PubMed Central Google Scholar
Koch K, Hartmann R, Tsiampali J et al (2020) A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discov 6:20
Article CAS PubMed PubMed Central Google Scholar
Leone RD, Zhao L, Englert JM et al (2019) Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366:1013–1021
Article CAS PubMed PubMed Central Google Scholar
Li X, Zhu H, Sun W et al (2021) Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells. Cancer Cell Int 21:479
Article PubMed PubMed Central Google Scholar
Li F, Qi B, Yang L et al (2022) CHI3L1 predicted in malignant entities is associated with glioblastoma immune microenvironment. Clin Immunol 245:109158
Article CAS PubMed Google Scholar
Liberzon A, Birger C, Thorvaldsdóttir H et al (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425
Article CAS PubMed PubMed Central Google Scholar
Magri S, Musca B, Pinton L et al (2022) The immunosuppression pathway of tumor-associated macrophages is controlled by heme oxygenase-1 in glioblastoma patients. Int J Cancer 151:2265–2277
Article CAS PubMed PubMed Central Google Scholar
Majewska E, Márquez J, Albrecht J, Szeliga M (2019) Transfection with GLS2 glutaminase (GAB) sensitizes human glioblastoma cell lines to oxidative stress by a common mechanism involving suppression of the PI3K/AKT pathway. Cancers (Basel) 11:1
Martins F, van der Kellen D, Goncalves LG, Serpa J (2023) Metabolic profiles point out metabolic pathways pivotal in two glioblastoma (GBM) cell lines, U251 and U-87MG. Biomedicines 11:7
Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457
Article CAS PubMed PubMed Central Google Scholar
Peng P, Zhu H, Liu D et al (2022) TGFBI secreted by tumor-associated macrophages promotes glioblastoma stem cell-driven tumor growth via integrin αvβ5-Src-Stat3 signaling. Theranostics 12:4221–4236
Article CAS PubMed PubMed Central Google Scholar
Qu C, Ma J, Liu X et al (2017) Dihydroartemisinin exerts anti-tumor activity by inducing mitochondrion and endoplasmic reticulum apoptosis and autophagic cell death in human glioblastoma cells. Front Cell Neurosci 11:310
Article PubMed PubMed Central Google Scholar
Que Z, Wang P, Hu Y et al (2017) Dihydroartemisin inhibits glioma invasiveness via a ROS to P53 to β-catenin signaling. Pharmacol Res 119:72–88
Article CAS PubMed Google Scholar
Rehman FU, Liu Y, Yang Q et al (2022) Heme oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy. J Control Release 345:696–708
Article CAS PubMed Google Scholar
Sabu A, Liu TI, Ng SS et al (2023) Nanomedicines targeting glioma stem cells. ACS Appl Mater Interfaces 15:158–181
Article CAS PubMed Google Scholar
Sidoryk M, Matyja E, Dybel A, Zielinska M, Bogucki J, Jaskólski DJ, Liberski PP, Kowalczyk P, Albrecht J (2004) Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. Neuroreport 15:575–578
Comments (0)