Bharti V, Tan H, Zhou H, Wang JF (2019) Txnip mediates glucocorticoid-activated NLRP3 inflammatory signaling in mouse microglia. Neurochem Int 131:104564
Article CAS PubMed Google Scholar
Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L (2018) Development of azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s Disease. J Prev Alzheim 5(2):149–154
Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ, Zhao B (2016) Role of RAGE in Alzheimer’s Disease. Cell Mol Neurobiol 36(4):483–495
Article CAS PubMed Google Scholar
Choi BR, Cho WH, Kim J, Lee HJ, Chung C, Jeon WK, Han JS (2014) Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med 46(2):e75
Article CAS PubMed PubMed Central Google Scholar
Cuevas E, Lantz SM, Tobón-Velasco JC, Newport GD, Wu Q, Virmani A, Ali SF, Santamaría A (2011) On the in vivo early toxic properties of A-beta 25–35 peptide in the rat hippocampus: involvement of the Receptor-for-Advanced Glycation-End-Products and changes in gene expression. Neurotoxicol Teratol 33(2):288–296
Article CAS PubMed Google Scholar
Cui L, Cai Y, Cheng W, Liu G, Zhao J, Cao H, Tao H, Wang Y, Yin M, Liu T, Liu Y, Huang P, Liu Z, Li K, Zhao B (2017) A novel, multi-target natural drug candidate, matrine, improves cognitive deficits in Alzheimer’s Disease transgenic mice by inhibiting aβ aggregation and blocking the RAGE/Aβ Axis. Mol Neurobiol 54(3):1939–1952
Article CAS PubMed Google Scholar
Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV (2012) A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Investig 122(4):1377–1392
Article CAS PubMed PubMed Central Google Scholar
Ding B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, Peng X, Ji S, Ma Y, Yang W (2020) Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflamm 17(1):302
Dong H, Zhang Y, Huang Y, Deng H (2022) Pathophysiology of RAGE in inflammatory diseases. Front Immunol 13:931473
Article CAS PubMed PubMed Central Google Scholar
Dubey H, Gulati K, Ray A (2018a) Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci 29(3):241–260
Article CAS PubMed Google Scholar
Dubey H, Gulati K, Ray A (2018b) Amelioration by nitric oxide (NO) mimetics on neurobehavioral and biochemical changes in experimental model of Alzheimer’s disease in rats. Neurotoxicology 66:58–65
Article CAS PubMed Google Scholar
Dubey H, Dubey A, Gulati K, Ray A (2022) Protective effects of L-arginine on cognitive deficits and biochemical parameters in an experimental model of type-2 diabetes mellitus induced Alzheimer's disease in rats. J Physiol Pharmacol 73(1)
Dubey H, Roychoudhury R, Alex A, Best C, Liu S, White A, Carlson A, Azcarate-Peril MA, Mansfield LS, Knickmeyer R (2023) Effect of Human Infant Gut Microbiota on Mouse Behavior, Dendritic Complexity, and Myelination. bioRxiv [Preprint]
Fang F, Yu Q, Arancio O, Chen D, Gore SS, Yan SS, Yan SF (2018) RAGE mediates Abeta accumulation in a mouse model of Alzheimer’s disease via modulation of beta- and gamma-secretase activity. Hum Mol Genet 27(6):1002–1014
Article CAS PubMed PubMed Central Google Scholar
Fertan E, Rodrigues GJ, Wheeler RV, Goguen D, Wong AA, James H, Stadnyk A, Brown RE, Weaver ICG (2019) Cognitive decline, cerebral-spleen tryptophan metabolism, oxidative stress, cytokine production, and regulation of the txnip gene in a triple transgenic mouse model of Alzheimer Disease. Am J Pathol 189(7):1435–1450
Article CAS PubMed Google Scholar
Finneran DJ, Nash KR (2019) Neuroinflammation and fractalkine signaling in Alzheimer’s disease. J Neuroinflamm 16(1):30
GBD (2019) Dementia Forecasting Collaborators (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7(2):e105–e125
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L (2022) Dioscin alleviates Alzheimer’s disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 152:113248
Article CAS PubMed Google Scholar
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A (2021) The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry 26(10):5481–5503
Article CAS PubMed PubMed Central Google Scholar
Han YT, Choi GI, Son D, Kim NJ, Yun H, Lee S, Chang DJ, Hong HS, Kim H, Ha HJ, Kim YH, Park HJ, Lee J, Suh YG (2012) Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J Med Chem 55(21):9120–9135
Article CAS PubMed Google Scholar
Han YT, Kim K, Son D, An H, Kim H, Lee J, Park HJ, Lee J, Suh YG (2015) Fine tuning of 4,6-bisphenyl-2-(3-alkoxyanilino)pyrimidine focusing on the activity-sensitive aminoalkoxy moiety for a therapeutically useful inhibitor of receptor for advanced glycation end products (RAGE). Bioorg Med Chem 23(3):579–587
Article CAS PubMed Google Scholar
Hong Y, Shen C, Yin Q, Sun M, Ma Y, Liu X (2016) Effects of RAGE-specific inhibitor FPS-ZM1 on amyloid-β metabolism and ages-induced inflammation and oxidative stress in rat hippocampus. Neurochem Res 41(5):1192–1199
Article CAS PubMed Google Scholar
Huang YY, Fang N, Luo HR, Gao F, Zou Y, Zhou LL, Zeng QP, Fang SS, Xiao F, Zheng Q (2020) RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology 180:108304
Article CAS PubMed Google Scholar
Hudson BI, Lippman ME (2018) Targeting RAGE signaling in inflammatory disease. Ann Rev Med 69:349–364
Article CAS PubMed Google Scholar
Hudson BI, Kalea AZ, Del Mar AM, Harja E, Boulanger E, D’Agati V, Schmidt AM (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283(49):34457–34468
Article CAS PubMed PubMed Central Google Scholar
Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Letter 550:107–113
Jia J, Wei C, Chen S, Li F, Tang Y, Qin W, Zhao L, Jin H, Xu H, Wang F, Zhou A, Zuo X, Wu L, Han HY, Huang L, Wang Q, Li D, Chu C, Shi L, Gong M, Du Y, Zhang J, Zhang J, Zhou C, Lv J, Lv Y, Xie H, Ji Y, Li F, Yu E, Luo B, Wang Y, Yang S, Qu Q, Guo Q, Liang F, Zhang J, Tan L, Shen L, Zhang K, Zhang J, Peng D, Tang M, Lv P, Fang B, Chu L, Jia L, Gauthier S (2018) The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement 14(4):483–491
Jorfi M, Maaser-Hecker A, Tanzi RE (2023) The neuroimmune axis of Alzheimer’s disease. Genome Med 15(1):6
Article CAS PubMed PubMed Central Google Scholar
Kalea AZ, Schmidt AM, Hudson BI (2009) RAGE: a novel biological and genetic marker for vascular disease. Clin Sci 116(8):621–637
Kierdorf K, Fritz G (2013) RAGE regulation and signaling in inflammation and beyond. J Leukocyte Biol 94(1):55–68
Article CAS PubMed Google Scholar
Kim HY, Lee DK, Chung BR, Kim HV, Kim Y (2016) Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits. J vis Exp 16(109):53308
Li L, Ismael S, Nasoohi S, Sakata K, Liao FF, McDonald MP, Ishrat T (2019) Thioredoxin-interacting protein (TXNIP) associated nlrp3 inflammasome activation in human alzheimer’s disease brain. J Alzheimers Dis 68(1):255–265
Comments (0)