Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer’s Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation

Abdel Rasheed NO, Sayed E, N. S., El-Khatib AS (2018) Targeting central β2 receptors ameliorates streptozotocin-induced neuroinflammation via inhibition of glycogen synthase kinase3 pathway in mice. Prog Neuropsychopharmacol Biol Psychiatry 86:65–75. https://doi.org/10.1016/j.pnpbp.2018.05.010

Article  CAS  PubMed  Google Scholar 

Afees OJ, Ayodele BR, Gbenga A, Taiye AS, Yinka OS, Dayo O, Sunday FO, Leviticus A, Esther OO, Igbo EJ (2022) Localised streptozotocin-induced structural and cognitive changes in the hippocampal cornu ammonis 1 (CA-1) neurons and mitigating effects of Zingiber officinale. Phytomed Plus 2(1):101–162. https://doi.org/10.1016/j.phyplu.2021.100162

Article  Google Scholar 

Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sangeeta Pilkhwal Sah (2020) Chromium Picolinate Attenuates Cognitive Deficit in ICV-STZ Rat Paradigm of Sporadic Alzheimer’s-like Dementia via Targeting Neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β Pathway. Inflammopharmacology 28 (2): 385–400. https://doi.org/10.1007/s10787-019-00681-7

Akhtar A, Dhaliwal J, Sangeeta Pilkhwal Sah (2021) 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology 238(7):1991–2009. https://doi.org/10.1007/s00213-021-05826-7

Article  CAS  PubMed  Google Scholar 

Albeely AM, Ryan SD, Perreault ML (2018) Pathogenic feed-Forward mechanisms in Alzheimer’s and Parkinson’s Disease converge on GSK-3. Brain Plast 4(2):151–167. https://doi.org/10.3233/bpl-180078

Article  PubMed  PubMed Central  Google Scholar 

Ali NH, Hayder M, Al-Kuraishy AI, Al-Gareeb SA, Alnaaim A, Alexiou M, Papadakis AA, Khalifa HM, Saad, Gaber El Saber Batiha (2024) Neprilysin inhibitors and risk of Alzheimer’s Disease: a future perspective. J Cell Mol Med 28(2):1–17. https://doi.org/10.1111/jcmm.17993

Article  CAS  Google Scholar 

Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I (2013) A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res, 2, 151. https://doi.org/10.12688/f1000research.2-151.v1

Arafa NM, Marie MA, AlAzimi SA (2016) Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model. Chem Biol Interact 258:79–88. https://doi.org/10.1016/j.cbi.2016.08.016

Article  CAS  PubMed  Google Scholar 

Assefa BT, Tafere GG, Wondafrash DZ, Gidey MT (2020) The Bewildering Effect of AMPK Activators in Alzheimer’s Disease: Review of the Current Evidence. Biomed Res Int, 2020, 9895121. https://doi.org/10.1155/2020/9895121

Bak J, Pyeon HI, Seok JI, Choi YS (2017) Effect of rotation preference on spontaneous alternation behavior on Y maze and introduction of a new analytical method, entropy of spontaneous alternation. Behav Brain Res 320:219–224. https://doi.org/10.1016/j.bbr.2016.12.011

Article  PubMed  Google Scholar 

Barai P, Raval N, Acharya S, Acharya N (2018) Bergenia Ciliata ameliorates streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed Pharmacother 102:966–980. https://doi.org/10.1016/j.biopha.2018.03.115

Article  CAS  PubMed  Google Scholar 

Bengoetxea X, Rodriguez-Perdigon M, Ramirez MJ (2015) Object recognition test for studying cognitive impairments in animal models of Alzheimer’s disease. Front Biosci (Schol Ed) 7(1):10–29. https://doi.org/10.2741/s421

Article  PubMed  Google Scholar 

Cai Z, Yan L-J, Li K, Quazi SH, Zhao B (2012) Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol Med 14:1–14. https://doi.org/10.1007/s12017-012-8173-2

Article  CAS  PubMed  Google Scholar 

Chen Y, Tian Z, Liang Z, Sun S, Dai CL, Lee MH, LaFerla FM, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX (2012) Brain gene expression of a sporadic (icv-STZ mouse) and a familial mouse model (3xTg-AD mouse) of Alzheimer’s disease. PLoS ONE 7(12):e51432. https://doi.org/10.1371/journal.pone.0051432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, Iqbal K, Liu F, Gong CX (2014) Intracerebroventricular Streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 49(1):547–562. https://doi.org/10.1007/s12035-013-8539-y

Article  CAS  PubMed  Google Scholar 

Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14(7):399–415. https://doi.org/10.1038/s41582-018-0013-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunha MP, Pazini FL, Rosa JM, Ramos-Hryb AB, Oliveira Á, Kaster MP, Rodrigues AL (2015) Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A2A receptor activation. Purinergic Signal 11(2):215–227. https://doi.org/10.1007/s11302-015-9446-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Oliveira Lanna ME, Pimentel MLV, Novis SAP (2014) Diabetes effects in Alzheimer disease: the interactive role of insulin and Aβ peptide. J Alzheimers Dis Parkinsonism 14(4):21–61. https://doi.org/10.4172/2161-0460.1000151

Google Scholar 

Denninger JK, Smith BM, Kirby ED (2018) Novel Object Recognition and object location behavioral testing in mice on a Budget. J Vis Exp 141. https://doi.org/10.3791/58593

Desai AK, Grossberg GT (2005) Diagnosis and treatment of Alzheimer’s disease. Neurology 64(12 Suppl 3):S34–39. https://doi.org/10.1212/wnl.64.12_suppl_3.s34

Article  CAS  PubMed  Google Scholar 

DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

Article  PubMed  PubMed Central  Google Scholar 

Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K, Liu R, Wang JZ, Zhou XW (2015) AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J Alzheimers Dis 43(3):775–784. https://doi.org/10.3233/jad-140564

Article  CAS  PubMed  Google Scholar 

El Sayed NS, Kandil EA, Ghoneum MH (2021) Enhancement of Insulin/PI3K/Akt signaling pathway and modulation of gut microbiome by Probiotics Fermentation Technology, a Kefir Grain Product, in sporadic Alzheimer’s Disease Model in mice. Front Pharmacol 12:666502. https://doi.org/10.3389/fphar.2021.666502

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Maraghy SA, Reda A, Essam RM, Kortam MA (2023) The Citrus Flavonoid’ Nobiletin’ impedes STZ-Induced Alzheimer’s Disease in a mouse model through regulating Autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 31(5):2701–2717. https://doi.org/10.1007/s10787-023-01292-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsheikh MA, El-Feky YA, Al-Sawahli MM, Ali ME, Fayez AM, Abbas H (2022) A Brain-Targeted Approach to Ameliorate Memory Disorders in a Sporadic Alzheimer’s Disease Mouse Model via Intranasal Luteolin-Loaded Nanobilosomes. Pharmaceutics 14(3). https://doi.org/10.3390/pharmaceutics14030576

Eslamizade MJ, Madjd Z, Rasoolijazi H, Saffarzadeh F, Pirhajati V, Aligholi H, Janahmadi M, Mehdizadeh M (2016) Impaired memory and evidence of histopathology in CA1 pyramidal neurons through injection of Aβ1–42 peptides into the frontal cortices of rat. Basic Clin Neurosci 7(1):31–41

CAS  PubMed  PubMed Central  Google Scholar 

Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu Z, Sun H, Fan Y, Dong Y, Yang J, Shi C, Xu Y (2019) New insights into the pathogenesis of Alzheimer’s Disease. Front Neurol 10:1312. https://doi.org/10.3389/fneur.2019.01312

Article  PubMed  Google Scholar 

Fão L, Mota SI, Rego AC (2019) Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 54:100942. https://doi.org/10.1016/j.arr.2019.100942

Article  CAS  PubMed  Google Scholar 

Fronza MG, Baldinotti R, Martins MC, Goldani B, Dalberto BT, Kremer FS, Begnini K, Pinto LDS, Lenardão EJ, Seixas FK, Collares T, Alves D, Savegnago L (2019) Rational design, cognition and neuropathology evaluation of QTC-4-MeOBnE in a streptozotocin-induced mouse model of sporadic Alzheimer’s disease. Sci Rep 9(1):7276. https://doi.org/10.1038/s41598-019-43532-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Ayllón MS, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s Disease: crosstalk with P-tau and β-Amyloid. Front Mol Neurosci 4:22. https://doi.org/10.3389/fnmol.2011.00022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghoneum MH, El Sayed NS (2021) Protective effect of Biobran/MGN-3 against sporadic Alzheimer’s Disease Mouse Model: possible role of oxidative stress and apoptotic pathways. Oxid Med Cell Longev 2021:8845064. https://doi.org/10.1155/2021/8845064

Article  CAS  PubMed 

Comments (0)

No login
gif