Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A (2023) Diabetes and its cardiovascular complications: potential role of the acetyltransferase p300. Cells 12(3):1–16
Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23(2):168–175
Article CAS PubMed Google Scholar
Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 276(6):618–632
Article CAS PubMed Google Scholar
Beverly JK, Budoff MJ (2020) Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes 12(2):102–104
Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223
Article CAS PubMed PubMed Central Google Scholar
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H (2022) Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 7(1):1–25
PubMed PubMed Central Google Scholar
Popov D (2010) Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. Int J Diabetes Mellit [Internet] 2(3):189–95. https://doi.org/10.1016/j.ijdm.2010.09.002
Kaur R, Kaur M, Singh J (2018) Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol [Internet] 17(1):1–17. https://doi.org/10.1186/s12933-018-0763-3
Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY et al (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 111(9):1373–1380
Article CAS PubMed PubMed Central Google Scholar
Hamed S, Brenner B, Roguin A (2011) Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc Res 91(1):9–15
Article CAS PubMed Google Scholar
Wan Y, Liu Z, Wu A, Khan AH, Zhu Y, Ding S et al (2022) Hyperglycemia promotes endothelial cell senescence through AQR/PLAU signaling axis. Int J Mol Sci 23(5):5–9
Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10(January):1–15
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y (2017) Sirtuins in glucose and lipid metabolism. Oncotarget 8(1):1845–1859
Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36(48):3404–3412
Article CAS PubMed PubMed Central Google Scholar
Sivanand (2019) Sirtuins, cell senescence, and vascular aging HHS Public Access. Physiol Behav 176(3):139–148
Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y et al (2021) LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 37(8):110038
Article CAS PubMed Google Scholar
Budbazar E, Rodriguez F, Sanchez JM, Seta F (2020) The role of sirtuin-1 in the vasculature: focus on aortic aneurysm. Front Physiol 11(August):1–10
Winnik S, Stein S, M Matter C (2012) SIRT1 – an anti-inflammatory pathway at the crossroads between metabolic disease and atherosclerosis. Curr Vasc Pharmacol 10(6):693–696
Article CAS PubMed Google Scholar
Zhu Z, Li J, Zhang X (2019) Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern Med 19(1):1–10
Zhou C, Tan Y, Xu B, Wang Y, Cheang WS (2022) 3,4′,5-Trimethoxy-trans-stilbene alleviates endothelial dysfunction in diabetic and obese mice via activation of the AMPK/SIRT1/eNOS pathway. Antioxidants 11(7):1–15
Nishikawa T, Kukidome D, Sonoda K, Fujisawa K, Matsuhisa T, Motoshima H et al (2007) Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res Clin Pract 77(3 SUPPL.):161–164
Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790
Article CAS PubMed Google Scholar
Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29(12):4766–4771
Article CAS PubMed Google Scholar
Shaikh A, Neeli PK, Singuru G, Panangipalli S, Banerjee R, Maddi SR et al (2021) A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun 57(92):12329–12332
Karnewar S, Vasamsetti SB, Gopoju R, Kanugula AK, Ganji SK, Prabhakar S et al (2016) Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep [Internet] 6(December 2015):1–18. https://doi.org/10.1038/srep24108
Katta S, Karnewar S, Panuganti D, Jerald MK, Sastry BKS, Kotamraju S (2018) Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: role in acute coronary artery syndrome. J Cell Physiol 233(1):214–225
Article CAS PubMed Google Scholar
Karnewar S, Pulipaka S, Katta S, Panuganti D, Neeli PK, Thennati R, Jerald MK, Kotamraju S (2022) Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe−/− mice. Atherosclerosis 356:28–40
Article CAS PubMed Google Scholar
Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N et al (2018) Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis [Internet] 1864(4):1115–1128. https://doi.org/10.1016/j.bbadis.2018.01.018
Article CAS PubMed Google Scholar
Cantó C, Auwerx J (2009) PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105
Article PubMed PubMed Central Google Scholar
Hegarty BD, Turner N, Cooney GJ, Kraegen EW (2009) Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol 196(1):129–145
Ono-Moore KD, Blackburn ML, Adams SH (2018) Is palmitate truly proinflammatory? Experimental confounders and context-specificity. Am J Physiol Endocrinol Metab 315(5):E780–E794
Article CAS PubMed Google Scholar
Kinsella GK, Cannito S, Bordano V, Stephens JC, Rosa AC, Miglio G et al (2021) GPR21 inhibition increases glucose-uptake in HepG2 cells. Int J Mol Sci 22(19):1–14
Coelho RP, Feksa DL, Oliveira PM, da Costa Güllich AA, Pilar BC, da Costa Escobar Piccoli J et al (2018) Protective effect of the hydroalcoholic extract of Tripodanthus acutifolius in hypercholesterolemic Wistar rats. Biomed Pharmacother [Internet] 97(July 2017):300–309. https://doi.org/10.1016/j.biopha.2017.10.003
Article CAS PubMed Google Scholar
Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh H et al (2006) Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem [Internet] 281(13):8748–8755. https://doi.org/10.1074/jbc.M505649200
Comments (0)