Prefrontal cortex astrocytes in major depressive disorder: exploring pathogenic mechanisms and potential therapeutic targets

Monroe SM, Harkness KL (2022) Major depression and its recurrences: life course matters. Annu Rev Clin Psychol 18:329–357. https://doi.org/10.1146/annurev-clinpsy-072220-021440

Article  PubMed  Google Scholar 

Li Z, Ruan M, Chen J, Fang Y (2021) Major depressive disorder: advances in neuroscience research and translational applications. Neurosci Bull 37(6):863–880. https://doi.org/10.1007/s12264-021-00638-3

Article  PubMed  PubMed Central  Google Scholar 

Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W (2023) Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 8(1):309. https://doi.org/10.1038/s41392-023-01519-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, Brietzke E, Dodd S, Gorwood P, Ho R et al (2021) Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry 178(5):383–399. https://doi.org/10.1176/appi.ajp.2020.20081251

Article  PubMed  PubMed Central  Google Scholar 

Ferreira NR, Vitorino C, Fortuna A (2022) From antioxidant to neuromodulator: the role of ascorbate in the management of major depression disorder. Biochem Pharmacol 206:115300. https://doi.org/10.1016/j.bcp.2022.115300

Article  CAS  PubMed  Google Scholar 

Dean RL, Hurducas C, Hawton K, Spyridi S, Cowen PJ, Hollingsworth S, Marquardt T, Barnes A, Smith R, McShane R et al (2021) Ketamine and other glutamate receptor modulators for depression in adults with unipolar major depressive disorder. Cochrane Database Syst Rev 9(9):Cd011612. https://doi.org/10.1002/14651858.CD011612.pub3

Marx W, Penninx B, Solmi M, Furukawa TA, Firth J, Carvalho AF, Berk M (2023) Major depressive disorder. Nat Rev Dis Primers 9(1):44. https://doi.org/10.1038/s41572-023-00454-1

Article  PubMed  Google Scholar 

Pizzagalli DA, Roberts AC (2022) Prefrontal cortex and depression. Neuropsychopharmacology 47(1):225–246. https://doi.org/10.1038/s41386-021-01101-7

Article  PubMed  Google Scholar 

Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B (2024) Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 9(1):30. https://doi.org/10.1038/s41392-024-01738-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde A P, Gil-Mohapel J, Rodrigues ALS (2023) Major depressive disorder and gut microbiota: role of physical exercise. Int J Mol Sci 24(23). https://doi.org/10.3390/ijms242316870

Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P (2023) Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 90:104527. https://doi.org/10.1016/j.ebiom.2023.104527

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reyes-Martínez S, Segura-Real L, Gómez-García AP, Tesoro-Cruz E, Constantino-Jonapa LA, Amedei A, Aguirre-García MM (2023) Neuroinflammation, microbiota-gut-brain axis, and depression: the vicious circle. J Integr Neurosci 22(3):65. https://doi.org/10.31083/j.jin2203065

Wu A, Zhang J (2023) Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 20(1):283. https://doi.org/10.1186/s12974-023-02964-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roohi E, Jaafari N, Hashemian F (2021) On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos? J Neuroinflammation 18(1):45. https://doi.org/10.1186/s12974-021-02100-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J (2022) Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 19(1):132. https://doi.org/10.1186/s12974-022-02492-0

Article  PubMed  PubMed Central  Google Scholar 

Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64(10):863–870. https://doi.org/10.1016/j.biopsych.2008.06.008

Article  PubMed  PubMed Central  Google Scholar 

Lu CL, Ren J, Mo JW, Fan J, Guo F, Chen LY, Wen YL, Li SJ, Fang YY, Wu ZF et al (2022) Glucocorticoid receptor-dependent astrocytes mediate stress vulnerability. Biol Psychiatry 92(3):204–215. https://doi.org/10.1016/j.biopsych.2021.11.022

Article  CAS  PubMed  Google Scholar 

Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6(3):219–233. https://doi.org/10.2174/187152707780619326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, Davoli MA, Perlman K, Aouabed Z, Mash DC et al (2023) Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun 14(1):2912. https://doi.org/10.1038/s41467-023-38530-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon DY, Xu B, Hu P, Zhao YT, Beagan JA, Nofziger JH, Cui Y, Phillips-Cremins JE, Blendy JA, Wu H et al (2022) Neuronal Yin Yang1 in the prefrontal cortex regulates transcriptional and behavioral responses to chronic stress in mice. Nat Commun 13(1):55. https://doi.org/10.1038/s41467-021-27571-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M (2023) Functional connectomics in depression: insights into therapies. Trends Cogn Sci 27(9):814–832. https://doi.org/10.1016/j.tics.2023.05.006

Article  PubMed  PubMed Central  Google Scholar 

Dudek KA, Dion-Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C (2021) Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 53(1):183–221. https://doi.org/10.1111/ejn.14547

Article  CAS  PubMed  Google Scholar 

Borbély É, Simon M, Fuchs E, Wiborg O, Czéh B, Helyes Z (2022) Novel drug developmental strategies for treatment-resistant depression. Br J Pharmacol 179(6):1146–1186. https://doi.org/10.1111/bph.15753

Article  CAS  PubMed  Google Scholar 

Caldiroli A, Capuzzi E, Tagliabue I, Capellazzi M, Marcatili M, Mucci F, Colmegna F, Clerici M, Buoli M, Dakanalis A (2021) Augmentative pharmacological strategies in treatment-resistant major depression: a comprehensive review. Int J Mol Sci 22(23). https://doi.org/10.3390/ijms222313070

Durkee CA, Araque A (2019) Diversity and specificity of astrocyte-neuron communication. Neuroscience 396:73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010

Article  CAS  PubMed  Google Scholar 

Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR (2023) Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun 11(1):42. https://doi.org/10.1186/s40478-023-01526-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22(2):154–166. https://doi.org/10.1038/s41593-018-0325-8

Article  CAS  PubMed  Google Scholar 

Patani R, Hardingham GE, Liddelow SA (2023) Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 19(7):395–409. https://doi.org/10.1038/s41582-023-00822-1

Article  CAS  PubMed  Google Scholar 

Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12(4):386–394. https://doi.org/10.1093/cercor/12.4.386

Article  PubMed  Google Scholar 

Rajk

Comments (0)

No login
gif