The oncogenic role of EIF4A3/CDC20 axis in the endometrial cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

Article  CAS  PubMed  Google Scholar 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

Article  PubMed  Google Scholar 

Gu B, Shang X, Yan M, Li X, Wang W, Wang Q, Zhang C (2021) Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990–2019. Gynecol Oncol 161:573–580. https://doi.org/10.1016/j.ygyno.2021.01.036

Article  PubMed  Google Scholar 

Matsuo K, Mandelbaum RS, Matsuzaki S, Klar M, Roman LD, Wright JD (2021) Ovarian conservation for young women with early-stage, low-grade endometrial cancer: a 2-step schema. Am J Obstet Gynecol 224:574–584. https://doi.org/10.1016/j.ajog.2020.12.1213

Article  PubMed  Google Scholar 

Datta NR, Stutz E, Gomez S, Bodis S (2019) Efficacy and safety evaluation of the various therapeutic options in locally advanced cervix cancer: a systematic review and network meta-analysis of randomized clinical trials. Int J Radiat Oncol Biol Phys 103:411–437. https://doi.org/10.1016/j.ijrobp.2018.09.037

Article  CAS  PubMed  Google Scholar 

Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM, AlQuadeib BT (2019) Paclitaxel. Profiles of drug substances, excipients, and related methodology 44:205-238. https://doi.org/10.1016/bs.podrm.2018.11.001

Caserta D, Besharat AR, Giannini A, D’Oria O (2023) Management of endometrial cancer: molecular identikit and tailored therapeutic approach. Clin Exp Obstet Gynecol 50(10):210. https://doi.org/10.31083/j.ceog5010210

Article  Google Scholar 

Caserta D, Giannini A, Besharat AR (2023) Pathogenesis and treatments of endometrial carcinoma. Clin Exp Obstet Gynecol 50(11):229. https://doi.org/10.31083/j.ceog5011229

Article  Google Scholar 

Makker V, Colombo N, CasadoHerráez A, Santin AD, Colomba E, Miller DS, Fujiwara K, Pignata S, Baron-Hay S, Ray-Coquard I et al (2022) Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med 386:437–448. https://doi.org/10.1056/NEJMoa2108330

Article  CAS  PubMed  Google Scholar 

Makker V, Colombo N, CasadoHerráez A, Monk BJ, Mackay H, Santin AD, Miller DS, Moore RG, Baron-Hay S, Ray-Coquard I et al (2023) Lenvatinib plus pembrolizumab in previously treated advanced endometrial cancer: updated efficacy and safety from the randomized phase III study 309/KEYNOTE-775. J Clin Oncol Off J Am Soc Clin Oncol 41:2904–2910. https://doi.org/10.1200/jco.22.02152

Article  CAS  Google Scholar 

Mirza MR, Chase DM, Slomovitz BM, dePont CR, Novák Z, Black D, Gilbert L, Sharma S, Valabrega G, Landrum LM et al (2023) Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med 388:2145–2158. https://doi.org/10.1056/NEJMoa2216334

Article  CAS  PubMed  Google Scholar 

Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, Dreyfuss G (2004) eIF4A3 is a novel component of the exon junction complex. RNA (New York, NY) 10:200–209. https://doi.org/10.1261/rna.5230104

Article  CAS  Google Scholar 

Michelle L, Cloutier A, Toutant J, Shkreta L, Thibault P, Durand M, Garneau D, Gendron D, Lapointe E, Couture S et al (2012) Proteins associated with the exon junction complex also control the alternative splicing of apoptotic regulators. Mol Cell Biol 32:954–967. https://doi.org/10.1128/mcb.06130-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanellis DC, Espinoza JA, Zisi A, Sakkas E, Bartkova J, Katsori AM, Boström J, Dyrskjøt L, Broholm H, Altun M et al (2021) The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Sci Adv 7(32):eabf7561. https://doi.org/10.1126/sciadv.abf7561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu H, Zhang Z, Li D, Lv Q, Chen S, Zhang Z, Wu M (2022) LncRNA PELATON, a ferroptosis suppressor and prognositic signature for GBM. Front Oncol 12:817737. https://doi.org/10.3389/fonc.2022.817737

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Chen M, Fang L (2021) hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids 26:122–134. https://doi.org/10.1016/j.omtn.2021.07.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ju C, Zhou M, Du D, Wang C, Yao J, Li H, Luo Y, He F, He J (2023) EIF4A3-mediated circ_0042881 activates the RAS pathway via miR-217/SOS1 axis to facilitate breast cancer progression. Cell Death Dis 14:559. https://doi.org/10.1038/s41419-023-06085-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang M, Hu H, Wu S, Ding J, Yin B, Huang B, Li F, Guo X, Han L (2022) EIF4A3-regulated circ_0087429 can reverse EMT and inhibit the progression of cervical cancer via miR-5003-3p-dependent upregulation of OGN expression. J Exp Clin Cancer Res CR 41:165. https://doi.org/10.1186/s13046-022-02368-4

Article  CAS  PubMed  Google Scholar 

Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE (2005) Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell 20:65–75. https://doi.org/10.1016/j.molcel.2005.08.012

Article  CAS  PubMed  Google Scholar 

Mazloomian A, Araki S, Ohori M, El-Naggar AM, Yap D, Bashashati A, Nakao S, Sorensen PH, Nakanishi A, Shah S et al (2019) Pharmacological systems analysis defines EIF4A3 functions in cell-cycle and RNA stress granule formation. Commun Biol 2:165. https://doi.org/10.1038/s42003-019-0391-9

Article  PubMed  PubMed Central  Google Scholar 

Zhu Y, Ren C, Yang L (2021) Effect of eukaryotic translation initiation factor 4A3 in malignant tumors. Oncol Lett 21:358. https://doi.org/10.3892/ol.2021.12619

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong SM, Bui QT, Kwak M, Lee JY, Lee PC (2022) Targeting Cdc20 for cancer therapy. Biochim Biophys Acta 1877:188824. https://doi.org/10.1016/j.bbcan.2022.188824

Article  CAS  Google Scholar 

Kimata Y (2019) APC/C ubiquitin ligase: coupling cellular differentiation to G1/G0 phase in multicellular systems. Trends Cell Biol 29:591–603. https://doi.org/10.1016/j.tcb.2019.03.001

Article  CAS  PubMed  Google Scholar 

Kim Y, Choi JW, Lee JH, Kim YS (2019) Spindle assembly checkpoint MAD2 and CDC20 overexpressions and cell-in-cell formation in gastric cancer and its precursor lesions. Hum Pathol 85:174–183. https://doi.org/10.1016/j.humpath.2018.10.029

Article  CAS  PubMed  Google Scholar 

Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28:81–92. https://doi.org/10.1093/carcin/bgl100

Article  CAS  PubMed  Google Scholar 

Bruno S, Luserna G, di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G (2022) CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res CR 41:159. https://doi.org/10.1186/s13046-022-02363-9

Article  CAS  PubMed  Google Scholar 

Wu F, Wang M, Zhong T, Xiao C, Chen X, Huang Y, Wu M, Yu J, Chen D (2023) Inhibition of CDC20 potentiates anti-tumor immunity through facilitating GSDME-mediated pyroptosis in prostate cancer. Exp Hematol Oncol 12:67. https://doi.org/10.1186/s40164-023-00428-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif