Research progress and application of liver organoids for disease modeling and regenerative therapy

Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S (2009) Liver architecture, cell function, and disease. Seminars in immunopathology 31:399–409. https://doi.org/10.1007/s00281-009-0155-6

Article  PubMed  Google Scholar 

Pimpin L, Cortez-Pinto H, Negro F, Corbould E, Lazarus JV, Webber L, Sheron N (2018) Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol 69:718–735. https://doi.org/10.1016/j.jhep.2018.05.011

Article  PubMed  Google Scholar 

Lou TW, Yang RX, Fan JG (2024) The global burden of fatty liver disease: the major impact of China. Hepatobiliary surgery and nutrition 13:119–123. https://doi.org/10.21037/hbsn-23-556

Article  PubMed  PubMed Central  Google Scholar 

Byass P (2014) The global burden of liver disease: a challenge for methods and for public health. BMC Med 12:159. https://doi.org/10.1186/s12916-014-0159-5

Article  PubMed  PubMed Central  Google Scholar 

Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, Rowe C, Gerrard DT, Sison-Young R, Jenkins R et al (2015) Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol 62:581–589. https://doi.org/10.1016/j.jhep.2014.10.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32:266–277. https://doi.org/10.1152/physiol.00036.2016

Article  CAS  PubMed  Google Scholar 

Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science (New York, NY) 345:1247125. https://doi.org/10.1126/science.1247125

Article  CAS  Google Scholar 

Sun L, Hui L (2020) Progress in human liver organoids. J Mol Cell Biol 12:607–617. https://doi.org/10.1093/jmcb/mjaa013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. https://doi.org/10.1038/nature07935

Article  CAS  PubMed  Google Scholar 

Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ et al (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–250. https://doi.org/10.1038/nature11826

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rios AC, Clevers H (2018) Imaging organoids: a bright future ahead. Nat Methods 15:24–26. https://doi.org/10.1038/nmeth.4537

Article  CAS  PubMed  Google Scholar 

Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 18:618–623. https://doi.org/10.1038/nm.2695

Article  CAS  PubMed  Google Scholar 

Qu M, Xiong L, Lyu Y, Zhang X, Shen J, Guan J, Chai P, Lin Z, Nie B, Li C et al (2021) Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res 31:259–271. https://doi.org/10.1038/s41422-020-00453-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR (2014) Hepatic organoids for microfluidic drug screening. Lab Chip 14:3290–3299. https://doi.org/10.1039/c4lc00531g

Article  CAS  PubMed  Google Scholar 

Leite SB, Roosens T, El Taghdouini A, Mannaerts I, Smout AJ, Najimi M, Sokal E, Noor F, Chesne C, van Grunsven LA (2016) Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78:1–10. https://doi.org/10.1016/j.biomaterials.2015.11.026

Article  CAS  PubMed  Google Scholar 

Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A et al (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–2721. https://doi.org/10.1038/emboj.2013.204

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuth S, Le Blanc S, Krieger TG, Jabs J, Schenk M, Giese NA, Büchler MW, Eils R, Conrad C, Strobel O (2022) Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. Journal of experimental & clinical cancer research : CR 41:312. https://doi.org/10.1186/s13046-022-02519-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD et al (2015) In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4. https://doi.org/10.7554/eLife.05098

Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH (2011) Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Investig 121:2855–2862. https://doi.org/10.1172/jci57673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK et al (2019) Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 10:3991. https://doi.org/10.1038/s41467-019-11867-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404. https://doi.org/10.1038/nature13863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M et al (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36. https://doi.org/10.1016/j.stem.2009.11.013

Article  CAS  PubMed  Google Scholar 

Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA et al (2021) A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov 11:1562–1581. https://doi.org/10.1158/2159-8290.Cd-20-1109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trisno SL, Philo KED, McCracken KW, Catá EM, Ruiz-Torres S, Rankin SA, Han L, Nasr T, Chaturvedi P, Rothenberg ME et al (2018) Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 23:501-515.e507. https://doi.org/10.1016/j.stem.2018.08.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YH, Yang WH, Ni C (2021) Using esophagus organoid to explore the role of c-Myc in esophageal cancer initiation. Yi chuan = Hereditas 43:601–614. https://doi.org/10.16288/j.yczz.21-010

Article  CAS  PubMed  Google Scholar 

Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472:110–114. https://doi.org/10.1038/nature09851

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif