Konarski W, Poboży T, Śliwczyński A, Kotela I, Krakowiak J, Hordowicz M, Kotela A (2022) Avascular necrosis of femoral head-overview and current state of the art. Int J Environ Res Public Health 19(12):7348. https://doi.org/10.3390/ijerph19127348
Article PubMed PubMed Central Google Scholar
Yang S, Zusman N, Lieberman E, Goldstein RY (2019) Developmental dysplasia of the hip. Pediatr 143(1):e20181147. https://doi.org/10.1542/peds.2018-1147
Wu J, Yuan Z, Li J, Zhu M, Canavese F, Fuxing X, Li Y, Xu H (2021) Does the vascular development of the femoral head correlate with the incidence of avascular necrosis of the proximal femoral epiphysis in children with developmental dysplasia of the hip treated by closed reduction. J Child Orthop 15(4):395–401. https://doi.org/10.1302/1863-2548.15.210059
Article PubMed PubMed Central Google Scholar
Kim HK, Wiesman KD, Kulkarni V, Burgess J, Chen E, Brabham C, Ikram H, Du J, Lu A, Kulkarni AV, Dempsey M, Herring JA (2014) Perfusion MRI in early stage of Legg-Calvé-Perthes disease to predict lateral pillar involvement: a preliminary study. J Bone Joint Surg Am 96(14):1152–1160. https://doi.org/10.2106/JBJS.M.01221
Veramuthu V, Munajat I, Islam MA, Mohd EF, Sulaiman AR (2022) Prevalence of avascular necrosis following surgical treatments in unstable slipped capital femoral epiphysis (SCFE): a systematic review and meta-analysis. Children 9(9):1374. https://doi.org/10.3390/children9091374
Article PubMed PubMed Central Google Scholar
Zlotorowicz M, Czubak J, Caban A, Kozinski P, Boguslawska-Walecka R (2013) The blood supply to the femoral head after posterior fracture/dislocation of the hip, assessed by CT angiography. Bone Joint J 95(11):1453–1457. https://doi.org/10.1302/0301-620X.95B11.32383
Trueta J (1957) The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br 39(2):358–394. https://doi.org/10.1302/0301-620X.39B2.358
Lauritzen J (1974) The arterial supply to the femoral head in children. Acta Orthop Scand 45(5):724–736. https://doi.org/10.3109/17453677408989681
Article CAS PubMed Google Scholar
Théron J (1980) Angiography in Legg-Calvé-Perthes disease. Radiol 135(1):81–92. https://doi.org/10.1148/radiology.135.1.7360984
Atsumi T, Yamano K, Muraki M, Yoshihara S, Kajihara T (2000) The blood supply of the lateral epiphyseal arteries in Perthes' disease. J Bone Joint Surg Br 82(3):392–398. https://doi.org/10.1302/0301-620x.82b3.10193
Article CAS PubMed Google Scholar
Atsumi T, Yoshihara S, Hiranuma Y (2001) Revascularization of the artery of the ligamentum teres in Perthes disease. Clin Orthop Relat Res 386:210–217. https://doi.org/10.1097/00003086-200105000-00027
Demirkale I, Yaradılmış YU, Uysal Ramadan S, Taşkesen A, Ateş A, Altay M (2022) Periacetabular vascular anatomy in high-riding dysplastic hips: a CT angiographic study. Hip Int 32(4):523–529. https://doi.org/10.1177/1120700020968157
Zlotorowicz M, Czubak J, Kozinski P, Boguslawska-Walecka R (2012) Imaging the vascularisation of the femoral head by CT angiography. J Bone Joint Surg Br 94(9):1176–1179. https://doi.org/10.1302/0301-620X.94B9.29494
Article CAS PubMed Google Scholar
Zlotorowicz M, Czubak-Wrzosek M, Wrzosek P, Czubak J (2018) The origin of the medial femoral circumflex artery, lateral femoral circumflex artery and obturator artery. Surg Radiol Anat 40(5):515–520. https://doi.org/10.1007/s00276-018-2012-6
Article CAS PubMed PubMed Central Google Scholar
Moreno Grangeiro P, Rodrigues JC, de Angeli L, Leão Filho H, Montenegro NB, Guarniero R, Dempsey M, Kim H (2021) Feasibility of magnetic resonance angiography in patients with Legg-Calvé-Perthes disease. J Pediatr Orthop 41(9):e774–e779. https://doi.org/10.1097/BPO.0000000000001910
Kraan R, Kox LS, Mens MA, Kuijer P, Maas M (2019) Damage of the distal radial physis in young gymnasts: can three-dimensional assessment of physeal volume on MRI serve as a biomarker. Eur Radiol 29(11):6364–6371. https://doi.org/10.1007/s00330-019-06247-z
Article PubMed PubMed Central Google Scholar
Fialka C, Krestan CR, Stampfl P, Trieb K, Aharinejad S, Vécsei V (2005) Visualization of intraarticular structures of the acromioclavicular joint in an ex vivo model using a dedicated MRI protocol. AJR Am J Roentgenol 185(5):1126–1131. https://doi.org/10.2214/AJR.04.1433
Liu B, Cai J, Tian X, Huang K, Liu D, Zheng H, Wang L, Yang J, Xu H (2022) Preoperative MRI evaluation of hand vessels in children with congenital syndactyly malformation by a contrast-enhanced three-dimensional water-selective cartilage scan. Front Pediatr 10:880954. https://doi.org/10.3389/fped.2022.880954
Article PubMed PubMed Central Google Scholar
Kim HJ, Lee SH, Kang CH, Ryu JA, Shin MJ, Cho KJ, Cho WS (2011) Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques. Korean J Radiol 12(1):78–88. https://doi.org/10.3348/kjr.2011.12.1.78
Article PubMed PubMed Central Google Scholar
Rodríguez-Olivas AO, Hernández-Zamora E, Reyes-Maldonado E (2022) Legg-Calvé-Perthes disease overview. Orphanet J Rare Dis 17(1):125. https://doi.org/10.1186/s13023-022-02275-z
Article PubMed PubMed Central Google Scholar
Du J, Lu A, Dempsey M, Herring JA, Kim HK (2013) MR perfusion index as a quantitative method of evaluating epiphyseal perfusion in Legg-Calve-Perthes disease and correlation with short-term radiographic outcome: a preliminary study. J Pediatr Orthop 33(7):707–713. https://doi.org/10.1097/BPO.0b013e3182a05dc1
de Camargo FP, de Godoy RM Jr, Tovo R (1984) Angiography in Perthes' disease. Clin Orthop Relat Res 191:216–220
Cheon JE, Kim JY, Choi YH, Kim WS, Cho TJ, Yoo WJ (2021) MRI risk factors for development of avascular necrosis after closed reduction of developmental dysplasia of the hip: predictive value of contrast-enhanced MRI. PLoS One 16(3):e0248701. https://doi.org/10.1371/journal.pone.0248701
Article CAS PubMed PubMed Central Google Scholar
Muzaffar N, Song HR, Devmurari K, Modi H (2010) Meyer's dysplasia : delayed ossification of the femoral head as a differential diagnosis in perthes' disease. Acta Orthop Belg 76(5):608–612
Jaramillo D, Villegas-Medina O, Laor T, Shapiro F, Millis MB (1998) Gadolinium-enhanced MR imaging of pediatric patients after reduction of dysplastic hips: assessment of femoral head position, factors impeding reduction, and femoral head ischemia. AJR Am J Roentgenol 170(6):1633–1637. https://doi.org/10.2214/ajr.170.6.9609187
Article CAS PubMed Google Scholar
Shore BJ, Mardam-Bey SW, Kim YJ, Matheney T, Novais EN, Millis MB, Yen YM (2020) Vascular supply to the femoral head in patients with healed slipped capital femoral epiphysis. J Pediatr Orthop 40(1):e53–e57. https://doi.org/10.1097/BPO.0000000000001382
Foo TK, Saranathan M, Prince MR, Chenevert TL (1997) Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiol 203(1):275–280. https://doi.org/10.1148/radiology.203.1.9122407
Lee VS, Martin DJ, Krinsky GA, Rofsky NM (2000) Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR Am J Roentgenol 175(1):197–205. https://doi.org/10.2214/ajr.175.1.1750197
Article CAS PubMed Google Scholar
Riederer SJ, Fain SB, Kruger DG, Busse RF (1999) Real-time imaging and triggering of 3D contrast-enhanced MR angiograms using MR fluoroscopy. Magn Reson Mater Phys Biol Med 8(3):196–206. https://doi.org/10.1007/BF02594599
Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL (1997) Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiol 205(1):137–146. https://doi.org/10.1148/radiology.205.1.9314975
Slanina M, Zizka J, Klzo L, Lojík M (2010) Contrast-enhanced MR angiography utilizing parallel acquisition techniques in renal artery stenosis detection. Eur J Radiol 75(1):e46–e50. https://doi.org/10.1016/j.ejrad.2009.07.010
Hu HH, Madhuranthakam AJ, Kruger DG, Glockner JF, Riederer SJ (2006) Combination of 2D sensitivity encoding and 2D partial fourier techniques for improved acceleration in 3D contrast-enhanced MR angiography. Magn Reson Med 55(1):16–22. https://doi.org/10.1002/mrm.20742
Article PubMed PubMed Central Google Scholar
Roujol S, Foppa M, Basha TA, Akçakaya M, Kissinger KV, Goddu B, Berg S, Nezafat R (2014) Accelerated free breathing ECG triggered contrast enhanced pulmonary vein magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson 16(1):91. https://doi.org/10.1186/s12968-014-0091-z
Article PubMed PubMed Central Google Scholar
Skawina A, Litwin JA, Gorczyca J, Miodoński AJ (1994) Blood vessels in epiphyseal cartilage of human fetal femoral bone: a scanning electron microscopic study of corrosion casts. Anat Embryol (Berl) 189(5):457–462. https://doi.org/10.1007/BF00185441
Comments (0)