Magnetic resonance–enhanced high-resolution three-dimensional water-selective cartilage sequence visualization of hip vessels in children

Konarski W, Poboży T, Śliwczyński A, Kotela I, Krakowiak J, Hordowicz M, Kotela A (2022) Avascular necrosis of femoral head-overview and current state of the art. Int J Environ Res Public Health 19(12):7348. https://doi.org/10.3390/ijerph19127348

Article  PubMed  PubMed Central  Google Scholar 

Yang S, Zusman N, Lieberman E, Goldstein RY (2019) Developmental dysplasia of the hip. Pediatr 143(1):e20181147. https://doi.org/10.1542/peds.2018-1147

Article  Google Scholar 

Wu J, Yuan Z, Li J, Zhu M, Canavese F, Fuxing X, Li Y, Xu H (2021) Does the vascular development of the femoral head correlate with the incidence of avascular necrosis of the proximal femoral epiphysis in children with developmental dysplasia of the hip treated by closed reduction. J Child Orthop 15(4):395–401. https://doi.org/10.1302/1863-2548.15.210059

Article  PubMed  PubMed Central  Google Scholar 

Kim HK, Wiesman KD, Kulkarni V, Burgess J, Chen E, Brabham C, Ikram H, Du J, Lu A, Kulkarni AV, Dempsey M, Herring JA (2014) Perfusion MRI in early stage of Legg-Calvé-Perthes disease to predict lateral pillar involvement: a preliminary study. J Bone Joint Surg Am 96(14):1152–1160. https://doi.org/10.2106/JBJS.M.01221

Article  PubMed  Google Scholar 

Veramuthu V, Munajat I, Islam MA, Mohd EF, Sulaiman AR (2022) Prevalence of avascular necrosis following surgical treatments in unstable slipped capital femoral epiphysis (SCFE): a systematic review and meta-analysis. Children 9(9):1374. https://doi.org/10.3390/children9091374

Article  PubMed  PubMed Central  Google Scholar 

Zlotorowicz M, Czubak J, Caban A, Kozinski P, Boguslawska-Walecka R (2013) The blood supply to the femoral head after posterior fracture/dislocation of the hip, assessed by CT angiography. Bone Joint J 95(11):1453–1457. https://doi.org/10.1302/0301-620X.95B11.32383

Article  PubMed  Google Scholar 

Trueta J (1957) The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br 39(2):358–394. https://doi.org/10.1302/0301-620X.39B2.358

Article  PubMed  Google Scholar 

Lauritzen J (1974) The arterial supply to the femoral head in children. Acta Orthop Scand 45(5):724–736. https://doi.org/10.3109/17453677408989681

Article  CAS  PubMed  Google Scholar 

Théron J (1980) Angiography in Legg-Calvé-Perthes disease. Radiol 135(1):81–92. https://doi.org/10.1148/radiology.135.1.7360984

Article  Google Scholar 

Atsumi T, Yamano K, Muraki M, Yoshihara S, Kajihara T (2000) The blood supply of the lateral epiphyseal arteries in Perthes' disease. J Bone Joint Surg Br 82(3):392–398. https://doi.org/10.1302/0301-620x.82b3.10193

Article  CAS  PubMed  Google Scholar 

Atsumi T, Yoshihara S, Hiranuma Y (2001) Revascularization of the artery of the ligamentum teres in Perthes disease. Clin Orthop Relat Res 386:210–217. https://doi.org/10.1097/00003086-200105000-00027

Article  Google Scholar 

Demirkale I, Yaradılmış YU, Uysal Ramadan S, Taşkesen A, Ateş A, Altay M (2022) Periacetabular vascular anatomy in high-riding dysplastic hips: a CT angiographic study. Hip Int 32(4):523–529. https://doi.org/10.1177/1120700020968157

Article  PubMed  Google Scholar 

Zlotorowicz M, Czubak J, Kozinski P, Boguslawska-Walecka R (2012) Imaging the vascularisation of the femoral head by CT angiography. J Bone Joint Surg Br 94(9):1176–1179. https://doi.org/10.1302/0301-620X.94B9.29494

Article  CAS  PubMed  Google Scholar 

Zlotorowicz M, Czubak-Wrzosek M, Wrzosek P, Czubak J (2018) The origin of the medial femoral circumflex artery, lateral femoral circumflex artery and obturator artery. Surg Radiol Anat 40(5):515–520. https://doi.org/10.1007/s00276-018-2012-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreno Grangeiro P, Rodrigues JC, de Angeli L, Leão Filho H, Montenegro NB, Guarniero R, Dempsey M, Kim H (2021) Feasibility of magnetic resonance angiography in patients with Legg-Calvé-Perthes disease. J Pediatr Orthop 41(9):e774–e779. https://doi.org/10.1097/BPO.0000000000001910

Article  PubMed  Google Scholar 

Kraan R, Kox LS, Mens MA, Kuijer P, Maas M (2019) Damage of the distal radial physis in young gymnasts: can three-dimensional assessment of physeal volume on MRI serve as a biomarker. Eur Radiol 29(11):6364–6371. https://doi.org/10.1007/s00330-019-06247-z

Article  PubMed  PubMed Central  Google Scholar 

Fialka C, Krestan CR, Stampfl P, Trieb K, Aharinejad S, Vécsei V (2005) Visualization of intraarticular structures of the acromioclavicular joint in an ex vivo model using a dedicated MRI protocol. AJR Am J Roentgenol 185(5):1126–1131. https://doi.org/10.2214/AJR.04.1433

Article  PubMed  Google Scholar 

Liu B, Cai J, Tian X, Huang K, Liu D, Zheng H, Wang L, Yang J, Xu H (2022) Preoperative MRI evaluation of hand vessels in children with congenital syndactyly malformation by a contrast-enhanced three-dimensional water-selective cartilage scan. Front Pediatr 10:880954. https://doi.org/10.3389/fped.2022.880954

Article  PubMed  PubMed Central  Google Scholar 

Kim HJ, Lee SH, Kang CH, Ryu JA, Shin MJ, Cho KJ, Cho WS (2011) Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques. Korean J Radiol 12(1):78–88. https://doi.org/10.3348/kjr.2011.12.1.78

Article  PubMed  PubMed Central  Google Scholar 

Rodríguez-Olivas AO, Hernández-Zamora E, Reyes-Maldonado E (2022) Legg-Calvé-Perthes disease overview. Orphanet J Rare Dis 17(1):125. https://doi.org/10.1186/s13023-022-02275-z

Article  PubMed  PubMed Central  Google Scholar 

Du J, Lu A, Dempsey M, Herring JA, Kim HK (2013) MR perfusion index as a quantitative method of evaluating epiphyseal perfusion in Legg-Calve-Perthes disease and correlation with short-term radiographic outcome: a preliminary study. J Pediatr Orthop 33(7):707–713. https://doi.org/10.1097/BPO.0b013e3182a05dc1

Article  PubMed  Google Scholar 

de Camargo FP, de Godoy RM Jr, Tovo R (1984) Angiography in Perthes' disease. Clin Orthop Relat Res 191:216–220

Article  Google Scholar 

Cheon JE, Kim JY, Choi YH, Kim WS, Cho TJ, Yoo WJ (2021) MRI risk factors for development of avascular necrosis after closed reduction of developmental dysplasia of the hip: predictive value of contrast-enhanced MRI. PLoS One 16(3):e0248701. https://doi.org/10.1371/journal.pone.0248701

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muzaffar N, Song HR, Devmurari K, Modi H (2010) Meyer's dysplasia : delayed ossification of the femoral head as a differential diagnosis in perthes' disease. Acta Orthop Belg 76(5):608–612

PubMed  Google Scholar 

Jaramillo D, Villegas-Medina O, Laor T, Shapiro F, Millis MB (1998) Gadolinium-enhanced MR imaging of pediatric patients after reduction of dysplastic hips: assessment of femoral head position, factors impeding reduction, and femoral head ischemia. AJR Am J Roentgenol 170(6):1633–1637. https://doi.org/10.2214/ajr.170.6.9609187

Article  CAS  PubMed  Google Scholar 

Shore BJ, Mardam-Bey SW, Kim YJ, Matheney T, Novais EN, Millis MB, Yen YM (2020) Vascular supply to the femoral head in patients with healed slipped capital femoral epiphysis. J Pediatr Orthop 40(1):e53–e57. https://doi.org/10.1097/BPO.0000000000001382

Article  PubMed  Google Scholar 

Foo TK, Saranathan M, Prince MR, Chenevert TL (1997) Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiol 203(1):275–280. https://doi.org/10.1148/radiology.203.1.9122407

Article  CAS  Google Scholar 

Lee VS, Martin DJ, Krinsky GA, Rofsky NM (2000) Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR Am J Roentgenol 175(1):197–205. https://doi.org/10.2214/ajr.175.1.1750197

Article  CAS  PubMed  Google Scholar 

Riederer SJ, Fain SB, Kruger DG, Busse RF (1999) Real-time imaging and triggering of 3D contrast-enhanced MR angiograms using MR fluoroscopy. Magn Reson Mater Phys Biol Med 8(3):196–206. https://doi.org/10.1007/BF02594599

Article  CAS  Google Scholar 

Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL (1997) Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiol 205(1):137–146. https://doi.org/10.1148/radiology.205.1.9314975

Article  CAS  Google Scholar 

Slanina M, Zizka J, Klzo L, Lojík M (2010) Contrast-enhanced MR angiography utilizing parallel acquisition techniques in renal artery stenosis detection. Eur J Radiol 75(1):e46–e50. https://doi.org/10.1016/j.ejrad.2009.07.010

Article  PubMed  Google Scholar 

Hu HH, Madhuranthakam AJ, Kruger DG, Glockner JF, Riederer SJ (2006) Combination of 2D sensitivity encoding and 2D partial fourier techniques for improved acceleration in 3D contrast-enhanced MR angiography. Magn Reson Med 55(1):16–22. https://doi.org/10.1002/mrm.20742

Article  PubMed  PubMed Central  Google Scholar 

Roujol S, Foppa M, Basha TA, Akçakaya M, Kissinger KV, Goddu B, Berg S, Nezafat R (2014) Accelerated free breathing ECG triggered contrast enhanced pulmonary vein magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson 16(1):91. https://doi.org/10.1186/s12968-014-0091-z

Article  PubMed  PubMed Central  Google Scholar 

Skawina A, Litwin JA, Gorczyca J, Miodoński AJ (1994) Blood vessels in epiphyseal cartilage of human fetal femoral bone: a scanning electron microscopic study of corrosion casts. Anat Embryol (Berl) 189(5):457–462. https://doi.org/10.1007/BF00185441

Article  CAS  PubMed 

Comments (0)

No login
gif