Is posterior vertebral arthrodesis at the end of the electromagnetic rod lengthening program necessary for all patients? Comparative analysis of sixty six patients who underwent definitive spinal arthrodesis and twenty four patients with in situ lengthening rods

Jenks M, Craig J, Higgins J et al (2014) The MAGEC system for spinal lengthening in children with scoliosis: a NICE Medical Technology Guidance. Appl Health Econ Health Policy 12(6):587–599. https://doi.org/10.1007/s40258-014-0127-4

Article  PubMed  PubMed Central  Google Scholar 

Lebon J, Batailler C, Wargny M et al (2017) Magnetically controlled growing rod in early onset scoliosis: a 30-case multicenter study. Eur Spine J 26(6):1567–1576. https://doi.org/10.1007/s00586-016-4929-y

Article  PubMed  Google Scholar 

Akbarnia BA, Pawelek JB, Cheung KM et al (2014) Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2-year study. Spine Deform 2(6):493–497. https://doi.org/10.1016/j.jspd.2014.09.050

Article  PubMed  Google Scholar 

Joyce TJ, Smith SL, Rushton PRP, Bowey AJ, Gibson MJ (2018) Analysis of explanted magnetically controlled growing rods from seven UK spinal centers. Spine 43(1):E16–E22. https://doi.org/10.1097/BRS.0000000000002221

Article  PubMed  Google Scholar 

Rushton PRP, Smith SL, Kandemir G et al (2020) Spinal lengthening with magnetically controlled growing rods: data from the largest series of explanted devices. Spine 45(3):170–176. https://doi.org/10.1097/BRS.0000000000003215

Article  PubMed  Google Scholar 

Rushton PRP, Siddique I, Crawford R, Birch N, Gibson MJ, Hutton MJ (2017) Magnetically controlled growing rods in the treatment of early-onset scoliosis: a note of caution. Bone Joint J 99(6):708–713. https://doi.org/10.1302/0301-620X.99B6.BJJ-2016-1102.R2

Article  PubMed  Google Scholar 

Panagiotopoulou VC, Tucker SK, Whittaker RK et al (2017) Analysing a mechanism of failure in retrieved magnetically controlled spinal rods. Eur Spine J 26(6):1699–1710. https://doi.org/10.1007/s00586-016-4936-z

Article  PubMed  Google Scholar 

Lukina E, Laka A, Kollerov M et al (2016) Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation. Spine J 16(3):380–388. https://doi.org/10.1016/j.spinee.2015.11.040

Article  PubMed  Google Scholar 

Rushton PRP, Smith SL, Fender D, Bowey AJ, Gibson MJ, Joyce TJ (2021) Metallosis is commonly associated with magnetically controlled growing rods; results from an independent multicentre explant database. Eur Spine J 30(7):1905–1911. https://doi.org/10.1007/s00586-021-06750-2

Article  PubMed  Google Scholar 

Teoh KH, von Ruhland C, Evans SL et al (2016) Metallosis following implantation of magnetically controlled growing rods in the treatment of scoliosis: a case series. Bone Joint J 98(12):1662–1667. https://doi.org/10.1302/0301-620X.98B12.38061

Article  PubMed  Google Scholar 

Zhang T, Sze KY, Peng ZW et al (2020) Systematic investigation of metallosis associated with magnetically controlled growing rod implantation for early-onset scoliosis. Bone Joint J 102(10):1375–1383. https://doi.org/10.1302/0301-620X.102B10.BJJ-2020-0842.R1

Article  PubMed  Google Scholar 

Cundy PJ, Antoniou G, Freeman BJC, Cundy WJ (2022) Persistently raised serum titanium levels after spinal instrumentation in children. Spine 47(17):1241–1247. https://doi.org/10.1097/BRS.0000000000004406

Article  PubMed  Google Scholar 

Company_statement_MAGEC_X_availability_US_15July2021_Final.pdf [Internet]. [cited 2022 Jul 27]. Available from: https://www.nuvasive.com/wp-content/uploads/2021/07/Company_statement_MAGEC_X_availability_US_15July2021_Final.pdf

Cheung JPY, Cheung KM (2019) Current status of the magnetically controlled growing rod in treatment of early-onset scoliosis: what we know after a decade of experience. J Orthop Surg (Hong Kong) 27(3):2309499019886945. https://doi.org/10.1177/2309499019886945

Article  PubMed  Google Scholar 

Guzek RH, Murphy R, Hardesty CK et al (2022) Mortality in early-onset scoliosis during the growth-friendly surgery era. J Pediatr Orthop 42(3):131–137

Article  PubMed  Google Scholar 

Phillips JH, Knapp DR Jr, Herrera-Soto J (2013) Mortality and morbidity in early-onset scoliosis surgery. Spine 38(4):324–327. https://doi.org/10.1097/BRS.0b013e31826c6743

Article  PubMed  Google Scholar 

Cahill PJ, Marvil S, Cuddihy L et al (2010) Autofusion in the immature spine treated with growing rods. Spine 35(22):E1199–E1203. https://doi.org/10.1097/BRS.0b013e3181e21b50

Article  PubMed  Google Scholar 

Hanna R, Sharafinski M, Patterson K et al (2020) Is prophylactic formal fusion with implant revision necessary in non-ambulatory children with spinal muscular atrophy and growing rods who are no longer lengthened? Spine Deform 8(3):547–552. https://doi.org/10.1007/s43390-020-00077-6

Article  PubMed  Google Scholar 

Jain A, Sponseller PD, Flynn JM et al (2016) Avoidance of “final” surgical fusion after growing-rod treatment for early-onset scoliosis. J Bone Joint Surg Am 98(13):1073–1078. https://doi.org/10.2106/JBJS.15.01241

Article  PubMed  Google Scholar 

Hardesty CK, Murphy RF, Pawelek JB et al (2021) An initial effort to define an early onset scoliosis “graduate”-the Pediatric Spine Study Group experience. Spine Deform 9(3):679–683. https://doi.org/10.1007/s43390-020-00255-6

Article  PubMed  Google Scholar 

Mainard N, Saghbini E, Langlais T et al (2023) Clinical and radiological results of final fusion in patients who underwent lengthening with magnetically controlled growing rods. About 66 patients with a mean follow-up of 5 years. Eur Spine J 32(9):3118–3132. https://doi.org/10.1007/s00586-023-07834-x

Article  PubMed  Google Scholar 

Mainard N, Saghbini E, Langlais T et al (2023) Clinical and radiographic evolution of graduate patients treated with magnetically controlled growing rods: results of a French multicentre study of 90 patients. Eur Spine J 32(7):2558–2573. https://doi.org/10.1007/s00586-023-07762-w

Article  PubMed  Google Scholar 

Sawyer JR, de Mendonça RG, Flynn TS et al (2016) complications and radiographic outcomes of posterior spinal fusion and observation in patients who have undergone distraction-based treatment for early onset scoliosis. Spine Deform 4(6):407–412. https://doi.org/10.1016/j.jspd.2016.08.007

Article  PubMed  Google Scholar 

Ahuja K, Ifthekar S, Mittal S et al (2023) Is final fusion necessary for growing-rod graduates: a systematic review and meta-analysis. Global Spine J 13(1):209–218. https://doi.org/10.1177/21925682221090926

Article  PubMed  Google Scholar 

Bouthors C, Gaume M, Glorion C, Miladi L (2019) Outcomes at skeletal maturity of 34 children with scoliosis treated with a traditional single growing rod. Spine 44(23):1630–1637. https://doi.org/10.1097/BRS.0000000000003148

Article  PubMed  Google Scholar 

Pizones J, Martín-Buitrago MP, Sánchez Márquez JM, Fernández-Baíllo N, Baldan-Martin M, Sánchez Pérez-Grueso FJ (2018) Decision making of graduation in patients with early-onset scoliosis at the end of distraction-based programs: risks and benefits of definitive fusion. Spine Deform 6(3):308–313. https://doi.org/10.1016/j.jspd.2017.10.005

Article  PubMed  Google Scholar 

Murphy RF, Barfield WR, Emans JB et al (2020) Minimum 5-year follow-up on graduates of growing spine surgery for early onset scoliosis. J Pediatr Orthop 40(10):e942–e946. https://doi.org/10.1097/BPO.0000000000001646

Article  PubMed  Google Scholar 

Poe-Kochert C, Shannon C, Pawelek JB et al (2016) Final fusion after growing-rod treatment for early onset scoliosis: is it really final? J Bone Joint Surg Am 98(22):1913–1917. https://doi.org/10.2106/JBJS.15.01334

Article  PubMed  Google Scholar 

NuVasive-statement_US-availability-of-MAGEC-device_15July2021_Final.pdf [Internet]. [cited 2022 Jul 27]. Available from: https://www.nuvasive.com/wp-content/uploads/2021/07/NuVasive-statement_US-availability-of-MAGEC-device_15July2021_Final.pdf

Cheung KM, Cheung JP, Samartzis D et al (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974. https://doi.org/10.1016/S0140-6736(12)60112-3

Article  PubMed  Google Scholar 

Akbarnia BA, Cheung K, Noordeen H et al (2013) Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine 38(8):665–670. https://doi.org/10.1097/BRS.0b013e3182773560

Article  PubMed  Google Scholar 

Hickey BA, Towriss C, Baxter G et al (2014) Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J 23(Suppl 1):S61–S65. https://doi.org/10.1007/s00586-013-3163-0

Article  PubMed  Google Scholar 

Jones CS, Stokes OM, Patel SB, Clarke AJ, Hutton M (2016) Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J 16(4):e287–e291. https://doi.org/10.1016/j.spinee.2015.12.020

Article  PubMed  Google Scholar 

Beaven A, Gardner AC, Marks DS, Mehta JS, Newton-Ede M, Spilsbury JB (2018) Magnetically controlled growing rods: the experience of mechanical failure from a single center consecutive series of 28 children with a minimum follow-up of 2 years. Asian Spine J 12(5):794–802. https://doi.org/10.31616/asj.2018.12.5.794

Article  PubMed  PubMed Central  Google Scholar 

Joyce TJ, Smith SL, Kandemir G et al (2020) The NuVasive MAGEC rod urgent field safety notice concerning locking pin fracture: how does data from an independent explant center compare? Spine 45(13):872–876. https://doi.org/10.1097/BRS.0000000000003439

Article  PubMed  Google Scholar 

Yilgor C, Efendiyev A, Akbiyik F et al (2018) Metal ion release during growth-friendly instrumentation for early-onset scoliosis: a preliminary study. Spine Deform 6(1):48–53. https://doi.org/10.1016/j.jspd.2017.06.005

Article  PubMed  Google Scholar 

Li Y, Graham CK, Robbins C, Caird MS, Farley FA (2020) Elevated serum titanium levels in children with early onset scoliosis treated with growth-friendly instrumentation. J Pediatr Orthop 40(6):e420–e423. https://doi.org/10.1097/BPO.0000000000001463

Article  PubMed 

Comments (0)

No login
gif