Beyer G, Habtezion A, Werner J, et al. Chronic pancreatitis. Lancet. 2020;396:499–512.
Yadav D, Timmons L, Benson JT, et al. Incidence, prevalence, and survival of chronic pancreatitis: a population-based study. Am J Gastroenterol. 2011;106:2192–9.
Hirota M, Shimosegawa T, Masamune A, et al. The sixth nationwide epidemiological survey of chronic pancreatitis in Japan. Pancreatology. 2012;12:79–84.
Olesen SS, Mortensen LH, Zinck E, et al. Time trends in incidence and prevalence of chronic pancreatitis: a 25-year population-based nationwide study. United European Gastroenterol J. 2021;9:82–90.
Article PubMed PubMed Central Google Scholar
Falconi M, Bassi C, Casetti L, et al. Long-term results of Frey’s procedure for chronic pancreatitis: a longitudinal prospective study on 40 patients. J Gastrointest Surg. 2006;10:504–10.
Shimizu K, Ito T, Irisawa A, et al. Evidence-based clinical practice guidelines for chronic pancreatitis 2021. J Gastroenterol. 2022;57:709–24.
Article PubMed PubMed Central Google Scholar
Bang UC, Benfield T, Hyldstrup L, et al. Mortality, cancer, and comorbidities associated with chronic pancreatitis: a Danish nationwide matched-cohort study. Gastroenterology. 2014;146:989–94.
Zeng XP, Wang LJ, Guo HL, et al. Dasatinib ameliorates chronic pancreatitis induced by caerulein via anti-fibrotic and anti-inflammatory mechanism. Pharmacol Res. 2019;147: 104357.
Article CAS PubMed Google Scholar
Nadella S, Ciofoaia V, Cao H, et al. Cholecystokinin receptor antagonist therapy decreases inflammation and fibrosis in chronic pancreatitis. Dig Dis Sci. 2020;65:1376–84.
Article CAS PubMed Google Scholar
Tamura T, Kodama T, Sato K, et al. Dysregulation of PI3K and Hippo signaling pathways synergistically induces chronic pancreatitis via CTGF upregulation. J Clin Invest. 2021;131.
Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.
Article CAS PubMed Google Scholar
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.
Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.
Article CAS PubMed Google Scholar
Oh EJ, Lee HW, Kalimuthu S, et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J Control Release. 2018;279:79–88.
Article CAS PubMed Google Scholar
Watanabe Y, Tsuchiya A, Seino S, et al. Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice. Stem Cells Transl Med. 2019;8:271–84.
Article CAS PubMed Google Scholar
Zhou C-H, Li M-L, Qin A-L, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas. 2013;42:1291–302.
Article CAS PubMed Google Scholar
Kawakubo K, Ohnishi S, Fujita H, et al. Effect of fetal membrane-derived mesenchymal stem cell transplantation in rats with acute and chronic pancreatitis. Pancreas. 2016;45:707–13.
Article CAS PubMed Google Scholar
Xiao Ling K, Peng L, Jian Feng Z, et al. Stromal derived factor-1/CXCR4 axis involved in bone marrow mesenchymal stem cells recruitment to injured liver. Stem Cells Int. 2016;2016:8906945.
Article PubMed PubMed Central Google Scholar
Yang YK, Ogando CR, Wang See C, et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9:131.
Article CAS PubMed PubMed Central Google Scholar
Watanabe T, Sadakane Y, Yagama N, et al. Nucleotide-binding oligomerization domain 1 acts in concert with the cholecystokinin receptor agonist, cerulein, to induce IL-33-dependent chronic pancreatitis. Mucosal Immunol. 2016;9:1234–49.
Article CAS PubMed Google Scholar
Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017;10:283–98.
Article CAS PubMed Google Scholar
Tamai K, Yamazaki T, Chino T, et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci U S A. 2011;108:6609–14.
Article CAS PubMed PubMed Central Google Scholar
Aikawa E, Fujita R, Kikuchi Y, et al. Systemic high-mobility group box 1 administration suppresses skin inflammation by inducing an accumulation of PDGFRα(+) mesenchymal cells from bone marrow. Sci Rep. 2015;5:11008.
Article CAS PubMed PubMed Central Google Scholar
Goto T, Miyagawa S, Tamai K, et al. High-mobility group box 1 fragment suppresses adverse post-infarction remodeling by recruiting PDGFRalpha-positive bone marrow cells. PLoS ONE. 2020;15: e0230392.
Article CAS PubMed PubMed Central Google Scholar
Nojiri S, Tsuchiya A, Natsui K, et al. Synthesized HMGB1 peptide attenuates liver inflammation and suppresses fibrosis in mice. Inflamm Regen. 2021;41:28.
Article CAS PubMed PubMed Central Google Scholar
Yamada T, Araki H, Watabe K, et al. Adiponectin deficiency enhanced the severity of cerulein-induced chronic pancreatitis in mice. J Gastroenterol. 2010;45:742–9.
Article CAS PubMed Google Scholar
Gong J, Meng HB, Hua J, et al. The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Mol Med Rep. 2014;9:1575–82.
Article CAS PubMed PubMed Central Google Scholar
Miura A, Shimbo T, Kitayama T, et al. Contribution of PDGFRα lineage cells in adult mouse hematopoiesis. Biochem Biophys Res Commun. 2021;534:186–92.
Article CAS PubMed Google Scholar
Ishibashi K, Ikegami K, Shimbo T, et al. Single-cell transcriptome analysis reveals cellular heterogeneity in mouse intra- and extra articular ligaments. Commun Biol. 2022;5:1233.
Article CAS PubMed PubMed Central Google Scholar
https://jp.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article CAS PubMed Google Scholar
Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-87.e29.
Article CAS PubMed PubMed Central Google Scholar
Yang C, Liu ZL, Wang J, et al. Parabiosis modeling: protocol, application and perspectives. Zool Res. 2021;42:253–61.
Article CAS PubMed PubMed Central Google Scholar
Klauss S, Schorn S, Teller S, et al. Genetically induced vs. classical animal models of chronic pancreatitis: a critical comparison. FASEB J. 2018:fj201800241RR.
Tomaszewska E, Świątkiewicz M, Muszyński S, et al. Repetitive cerulein-induced chronic pancreatitis in growing pigs—a pilot study. Int J Mol Sci. 2023;24.
Han X, Li B, Bao J, et al. Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation. Front Immunol. 2022;13: 968639.
Article CAS PubMed PubMed Central Google Scholar
Yang L, Xie M, Yang M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5:4436.
Article CAS PubMed Google Scholar
Baxevanis AD, Landsman D. The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res. 1995;23:1604–13.
Article CAS PubMed PubMed Central Google Scholar
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.
Article CAS PubMed Google Scholar
Arriaga-Pizano L, Boscó-Gárate I, Martínez-Ordaz JL, et al. High serum levels of high-mobility group box 1 (HMGB1) and low levels of heat shock protein 70 (Hsp70) are associated with poor prognosis in patients with acute pancreatitis. Arch Med Res. 2018;49:504–11.
Comments (0)