The role of cellular senescence in neurodegenerative diseases

Acklin S, Zhang M, Du W et al (2020) Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 10:14170. https://doi.org/10.1038/s41598-020-71042-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akay LA, Effenberger AH, Tsai LH (2021) Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev 35:180–198. https://doi.org/10.1101/gad.344218.120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alsuraih M, O’Hara SP, Woodrum JE, Pirius NE, LaRusso NF (2021) Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2 (-/-) mouse. JHEP Rep Innov Hepatol 3:100250. https://doi.org/10.1016/j.jhepr.2021.100250

Article  Google Scholar 

Angom RS, Wang Y, Wang EF et al (2019) VEGF receptor-1 modulates amyloid 1–42 oligomer-induced senescence in brain endothelial cells. FASEB J 33:4626–4637. https://doi.org/10.1096/fj.201802003R

Article  CAS  Google Scholar 

Bae E-J, Choi M, Kim JT et al (2022) TNF-alpha promotes alpha-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp Mol Med 54:788–800. https://doi.org/10.1038/s12276-022-00789-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao W-D, Pang P, Zhou X-T et al (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 28:1548–1562. https://doi.org/10.1038/s41418-020-00685-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basri R, Awan FM, Yang BB et al (2022) Brain-protective mechanisms of autophagy associated circRNAs: kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 15:1078441. https://doi.org/10.3389/fnmol.2022.1078441

Article  CAS  PubMed  Google Scholar 

Bhat R, Crowe EP, Bitto A et al (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7:e45069. https://doi.org/10.1371/journal.pone.0045069

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bigbee JW (2023) Cells of the central nervous system: an overview of their structure and function. Adv Neurobiol 29:41–64. https://doi.org/10.1007/978-3-031-12390-0_2

Article  PubMed  Google Scholar 

Birch J, Gil J (2020) Senescence and the SASP: many therapeutic avenues. Genes Dev 34:1565–1576. https://doi.org/10.1101/gad.343129.120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boda E, Lorenzati M, Parolisi R et al (2022) Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nat Commun 13:2331. https://doi.org/10.1038/s41467-022-30010-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehme M, Guzzetta KE, Bastiaanssen TFS et al (2021) Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging 1:666–676. https://doi.org/10.1038/s43587-021-00093-9

Article  PubMed  Google Scholar 

Borgonetti V, Galeotti N (2022) Rosmarinic acid reduces microglia senescence: a novel therapeutic approach for the management of neuropathic pain symptoms. Biomedicines. https://doi.org/10.3390/biomedicines10071468

Article  PubMed  PubMed Central  Google Scholar 

Brelstaff JH, Mason M, Katsinelos T et al (2021) Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv 7:eabg4980. https://doi.org/10.1126/sciadv.abg4980

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buoso E, Attanzio A, Biundo F (2022) Cellular senescence in age-related diseases: molecular bases and therapeutic interventions. Cells 11:2029. https://doi.org/10.3390/cells11132029

Article  PubMed  PubMed Central  Google Scholar 

Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582. https://doi.org/10.1038/s41586-018-0543-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey A, Niedernhofer L, Camell C (2022) Telomeres are a life-extending gift. Nat Cell Biol 24:1449–1450. https://doi.org/10.1038/s41556-022-01004-9

Article  CAS  PubMed  Google Scholar 

Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488–492. https://doi.org/10.1038/nature22067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakravarti D, LaBella KA, DePinho RA (2021) Telomeres: history, health, and hallmarks of aging. Cell 184:306–322. https://doi.org/10.1016/j.cell.2020.12.028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Kimura M, Kim S et al (2011) Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A-Biol 66:312–319. https://doi.org/10.1093/gerona/glq223

Article  CAS  Google Scholar 

Chen Y, Ding S, Zhang H et al (2020) Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. J Funct Foods 65:103713. https://doi.org/10.1016/j.jff.2019.103713

Article  CAS  Google Scholar 

Chien H-T, Li C-Y, Su W-H et al (2023) Multi-omics profiling of chemotactic characteristics of brain microglia and astrocytoma. Life Sci 330:121855. https://doi.org/10.1016/j.lfs.2023.121855

Article  CAS  PubMed  Google Scholar 

Chinta SJ, Woods G, Demaria M et al (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 22:930–940. https://doi.org/10.1016/j.celrep.2017.12.092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow HM, Shi M, Cheng A et al (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819. https://doi.org/10.1038/s41593-019-0505-1

Article  CAS  PubMed  Google Scholar 

Cohn RL, Gasek NS, Kuchel GA, Xu M (2022) The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol 33:9–17. https://doi.org/10.1016/j.tcb.2022.04.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz Hernandez JC, Bracko O, Kersbergen CJ et al (2019) Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci 22:413–420. https://doi.org/10.1038/s41593-018-0329-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das MM, Svendsen CN (2015) Astrocytes show reduced support of motor neurons with aging that is accelerated in a rodent model of ALS. Neurobiol Aging 36:1130–1139. https://doi.org/10.1016/j.neurobiolaging.2014.09.020

Article  CAS  PubMed  Google Scholar 

De Nuccio C, Bernardo A, Troiano C et al (2020) NRF2 and PPAR-gamma pathways in oligodendrocyte progenitors: focus on ROS protection, mitochondrial biogenesis and promotion of cell differentiation. Int J Mol Sci 21:7216. https://doi.org/10.3390/ijms21197216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dehkordi SK, Walker J, Sah E et al (2021) Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat Aging 1:1107–1116. https://doi.org/10.1038/s43587-021-00142-3

Article  PubMed  PubMed Central  Google Scholar 

Derry PJ, Hegde ML, Jackson GR et al (2020) Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Prog Neurobiol 184:101716. https://doi.org/10.1016/j.pneurobio.2019.101716

Article  CAS  PubMed  Google Scholar 

Dorigatti AO, Riordan R, Yu Z et al (2022) Brain cellular senescence in mouse models of Alzheimer’s disease. Geroscience 44:1157–1168. https://doi.org/10.1007/s11357-022-00531-5

Article  PubMed  PubMed Central  Google Scholar 

Eaton SL, Wishart TM (2017) Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 28:324–337. https://doi.org/10.1007/s00335-017-9687-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fares MB, Jagannath S, Lashuel HA (2021) Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 22:111–131. https://doi.org/10.1038/s41583-020-00416-6

Article 

留言 (0)

沒有登入
gif