Ai CZ, Liu Y, Li W et al (2017) Computational explanation for bioactivation mechanism of targeted anticancer agents mediated by cytochrome P450s: a case of Erlotinib. PLoS ONE 12(6):e0179333. https://doi.org/10.1371/journal.pone.0179333
Article CAS PubMed PubMed Central Google Scholar
Al-Salama ZT (2021) Encorafenib: a review in metastatic colorectal cancer with a BRAF V600E mutation. Drugs 81(7):849–856. https://doi.org/10.1007/s40265-021-01501-5
Article CAS PubMed Google Scholar
Al-Shakliah NS, Attwa MW, Kadi AA, AlRabiah H (2020) Identification and characterization of in silico, in vivo, in vitro, and reactive metabolites of infigratinib using LC-ITMS: bioactivation pathway elucidation and in silico toxicity studies of its metabolites. RSC Adv 10(28):16231–16244. https://doi.org/10.1039/c9ra10871h
Article CAS PubMed PubMed Central Google Scholar
Barnette DA, Schleiff MA, Datta A, Flynn N, Swamidass SJ, Miller GP (2021) Meloxicam methyl group determines enzyme specificity for thiazole bioactivation compared to sudoxicam. Toxicol Lett 338:10–20. https://doi.org/10.1016/j.toxlet.2020.11.015
Article CAS PubMed Google Scholar
Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N et al (2021) A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 19:4538–4558. https://doi.org/10.1016/j.csbj.2021.08.011
Article CAS PubMed PubMed Central Google Scholar
Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27. https://doi.org/10.1145/1961189.1961199
Chawla S, Sharma S, Kashid S, Verma PK, Sapra A (2023) Therapeutic potential of thiophene compounds: a mini-review. Mini Rev Med Chem. https://doi.org/10.2174/1389557523666230206104257
Chen SL, Webb GI, Liu LY, Ma X (2020) A novel selective naive Bayes algorithm. Knowledge-Based Syst 192:12. https://doi.org/10.1016/j.knosys.2019.105361
Corsetti MA, Love TM (2022) Grafted and vanishing random subspaces. Pattern Anal Appl 25(1):89–124. https://doi.org/10.1007/s10044-021-01029-0
Dang NL, Hughes TB, Miller GP, Swamidass SJ (2017) Computational approach to structural alerts: furans, phenols, nitroaromatics, and thiophenes. Chem Res Toxicol 30(4):1046–1059. https://doi.org/10.1021/acs.chemrestox.6b00336
Article CAS PubMed PubMed Central Google Scholar
de Groot MJ (2006) Designing better drugs: predicting cytochrome P450 metabolism. Drug Disc Today 11(13):601–606. https://doi.org/10.1016/j.drudis.2006.05.001
Ding S, Shi Z, Tao D, An B (2016) Recent advances in support vector machines. Neurocomputing 211:1–3. https://doi.org/10.1016/j.neucom.2016.06.011
Filppula AM, Neuvonen PJ, Backman JT (2014) In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors. Drug Metab Dispos 42(7):1202–1209. https://doi.org/10.1124/dmd.114.057695
Article CAS PubMed Google Scholar
Ford KA, Ryslik G, Sodhi J et al (2015) Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 47(3):291–319. https://doi.org/10.3109/03602532.2015.1047026
Article CAS PubMed Google Scholar
Fraser K, Bruckner DM, Dordick JS (2018) Advancing predictive hepatotoxicity at the intersection of experimental, in silico, and artificial intelligence technologies. Chem Res Toxicol 31(6):412–430. https://doi.org/10.1021/acs.chemrestox.8b00054
Article CAS PubMed Google Scholar
Gramec D, Peterlin Mašič L, Sollner Dolenc M (2014) Bioactivation potential of thiophene-containing drugs. Chem Res Toxicol 27(8):1344–1358. https://doi.org/10.1021/tx500134g
Article CAS PubMed Google Scholar
He C, Mao Y, Wan H (2023a) Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Disc Today 28(7):103621. https://doi.org/10.1016/j.drudis.2023.103621
He C, Mao Y, Wan H (2023b) Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Disc Today. https://doi.org/10.1016/j.drudis.2023.103621
Helguera AM, Combes RD, González MP, Cordeiro MN (2008) Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem 8(18):1628–1655. https://doi.org/10.2174/156802608786786598
Article CAS PubMed Google Scholar
Kalgutkar AS (2020) Designing around structural alerts in drug discovery. J Med Chem 63(12):6276–6302. https://doi.org/10.1021/acs.jmedchem.9b00917
Article CAS PubMed Google Scholar
Kalgutkar AS, Dalvie D (2015) Predicting toxicities of reactive metabolite-positive drug candidates. Annu Rev Pharmacol Toxicol 55(1):35–54. https://doi.org/10.1146/annurev-pharmtox-010814-124720
Article CAS PubMed Google Scholar
Li F, Gonzalez FJ, Ma X (2012) LC–MS-based metabolomics in profiling of drug metabolism and bioactivation. Acta Pharmaceut Sin B 2(2):118–125. https://doi.org/10.1016/j.apsb.2012.02.010
Liu X, Lv H, Guo Y et al (2020) Structure-based reactivity profiles of reactive metabolites with glutathione. Chem Res Toxicol 33(7):1579–1593. https://doi.org/10.1021/acs.chemrestox.0c00081
Article CAS PubMed Google Scholar
Luo Y-B, Hou Y-Y, Wang Z et al (2022) Computational prediction for the metabolism of human UDP-glucuronosyltransferase 1A1 substrates. Comput Biol Med 149:105959. https://doi.org/10.1016/j.compbiomed.2022.105959
Article CAS PubMed Google Scholar
Madhukar NS, Khade PK, Huang L et al (2019) A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun 10(1):5221. https://doi.org/10.1038/s41467-019-12928-6
Article CAS PubMed PubMed Central Google Scholar
Manikandan P, Nagini S (2018) Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 19(1):38–54. https://doi.org/10.2174/1389450118666170125144557
Article CAS PubMed Google Scholar
Markham A, Duggan S (2021) Tirbanibulin: first approval. Drugs 81(4):509–513. https://doi.org/10.1007/s40265-021-01479-0
Article CAS PubMed Google Scholar
Matlock MK, Hughes TB, Swamidass SJ (2015) XenoSite server: a web-available site of metabolism prediction tool. Bioinformatics 31(7):1136–1137. https://doi.org/10.1093/bioinformatics/btu761
Article CAS PubMed Google Scholar
Mei H, Zhou Y, Liang G, Li Z (2005) Support vector machine applied in QSAR modelling. Chin Sci Bull 50(20):2291–2296. https://doi.org/10.1007/BF03183737
Mosedale M, Watkins PB (2020) Understanding idiosyncratic toxicity: lessons learned from drug-induced liver injury. J Med Chem 63(12):6436–6461. https://doi.org/10.1021/acs.jmedchem.9b01297
Article CAS PubMed Google Scholar
Riley RJ, Grime K, Weaver R (2007) Time-dependent CYP inhibition. Expert Opin Drug Metab Toxicol 3(1):51–66. https://doi.org/10.1517/17425255.3.1.51
Article CAS PubMed Google Scholar
Rydberg P, Gloriam DE, Olsen L (2010) The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26(23):2988–2989. https://doi.org/10.1093/bioinformatics/btq584
Article CAS PubMed Google Scholar
Sakatis MZ, Reese MJ, Harrell AW et al (2012) Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for > 200 compounds. Chem Res Toxicol 25(10):2067–2082. https://doi.org/10.1021/tx300075j
Article CAS PubMed Google Scholar
Stepan AF, Walker DP, Bauman J et al (2011) Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 24(9):1345–1410. https://doi.org/10.1021/tx200168d
Article CAS PubMed Google Scholar
Testa B, Pedretti A, Vistoli G (2012) Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Disc Today 17(11):549–560. https://doi.org/10.1016/j.drudis.2012.01.017
Comments (0)