Study of metalation of thioredoxin by gold(I) therapeutic compounds using combined liquid chromatography/capillary electrophoresis with inductively coupled plasma/electrospray MS/MS detection

Zhang J, Li X, Han X, Liu R, Fang J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci. 2017;38(9):794–808. https://doi.org/10.1016/j.tips.2017.06.001.

Article  CAS  PubMed  Google Scholar 

Ghareeb H, Metanis N. The thioredoxin system: a promising target for cancer drug development. Chemistry. 2020;26(45):10175–84. https://doi.org/10.1002/chem.201905792.

Article  CAS  PubMed  Google Scholar 

Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9. https://doi.org/10.1046/j.1432-1327.2000.01701.x.

Article  PubMed  Google Scholar 

Pearson RG. Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev. 1990;100:403–25. https://doi.org/10.1016/0010-8545(90)85016-L.

Article  CAS  Google Scholar 

Bhabak KP, Bhuyan BJ, Mugesh G. Bioinorganic and medicinal chemistry: aspects of gold(i)-protein complexes. Dalton Trans. 2011;40(10):2099. https://doi.org/10.1039/c0dt01057j.

Article  CAS  PubMed  Google Scholar 

Zhang X, Selvaraju K, Saei AA, et al. Repurposing of auranofin: thioredoxin reductase remains a primary target of the drug. Biochimie. 2019;162:46–54. https://doi.org/10.1016/j.biochi.2019.03.015.

Article  CAS  PubMed  Google Scholar 

Pratesi A, Gabbiani C, Ginanneschi M, Messori L. Reactions of medicinally relevant gold compounds with the C-terminal motif of thioredoxin reductase elucidated by MS analysis. Chem Commun. 2010;46(37):7001–3. https://doi.org/10.1039/C0CC01465F.

Article  CAS  Google Scholar 

Pratesi A, Gabbiani C, Michelucci E, et al. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488–499): an ESI-MS investigation. J Inorg Biochem. 2014;136:161–9. https://doi.org/10.1016/j.jinorgbio.2014.01.009.

Article  CAS  PubMed  Google Scholar 

Lamarche J, Alcoceba Álvarez E, Cordeau E, et al. Comparative reactivity of medicinal gold(i) compounds with the cyclic peptide vasopressin and its diselenide analogue. Dalton Trans. 2021;50(47):17487–90. https://doi.org/10.1039/D1DT03470G.

Article  CAS  PubMed  Google Scholar 

Ronga L, Tolbatov I, Giorgi E, et al. Mechanistic evaluations of the effects of auranofin triethylphosphine replacement with a trimethylphosphite moiety. Inorg Chem. 2023;62(26):10389–96. https://doi.org/10.1021/acs.inorgchem.3c01280.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev. 2019;48(2):447–62. https://doi.org/10.1039/C8CS00570B.

Article  CAS  PubMed  Google Scholar 

Geri A, Massai L, Messori L. Protein metalation by medicinal gold compounds: identification of the main features of the metalation process through ESI MS experiments. Molecules. 2023;28(13). https://doi.org/10.3390/molecules28135196.

Zoppi C, Massai L, Cirri D, Gabbiani C, Pratesi A, Messori L. Protein metalation by two structurally related gold(I) carbene complexes: an ESI MS study. Inorg Chim Acta. 2021;520: 120297. https://doi.org/10.1016/j.ica.2021.120297.

Article  CAS  Google Scholar 

Augello G, Azzolina A, Rossi F, et al. New insights into the behavior of NHC-gold complexes in cancer cells. Pharmaceutics. 2023;15(2):466. https://doi.org/10.3390/pharmaceutics15020466.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernabeu de Maria M, Lamarche J, Ronga L, Messori L, Szpunar J, Lobinski R. Selenol (-SeH) as a target for mercury and gold in biological systems: contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev. 2023;474:214836. https://doi.org/10.1016/j.ccr.2022.214836.

Article  CAS  Google Scholar 

Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995;3(3):239–43. https://doi.org/10.1016/S0969-2126(01)00153-8.

Article  CAS  PubMed  Google Scholar 

Gimeno MC, Laguna A, Visbal R. N-heterocyclic carbene coinage metal complexes as intense blue-green emitters. Organometallics. 2012;31(20):7146–57. https://doi.org/10.1021/om300571m.

Article  CAS  Google Scholar 

Liu W, Bensdorf K, Proetto M, Hagenbach A, Abram U, Gust R. Synthesis, characterization, and in vitro studies of bis[1,3-diethyl-4,5-diarylimidazol-2-ylidene]gold(I/III) complexes. J Med Chem. 2012;55(8):3713–24. https://doi.org/10.1021/jm3000196.

Article  CAS  PubMed  Google Scholar 

Wróblewska AM, Samsonowicz-Górski J, Kamińska E, Drozd M, Matczuk M. Optimization of a CE-ICP-MS/MS method for the investigation of liposome–cisplatin nanosystems and their interactions with transferrin. J Anal At Spectrom. 2022;37(7):1442–9. https://doi.org/10.1039/D1JA00459J.

Article  Google Scholar 

Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of medicinal gold(III) compounds with proteins and peptides explored by electrospray ionization mass spectrometry and complementary biophysical methods. Front Chem. 2020;8: 581648. https://doi.org/10.3389/fchem.2020.581648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zoppi C, Messori L, Pratesi A. ESI MS studies highlight the selective interaction of auranofin with protein free thiols. Dalton Trans. 2020;49(18):5906–13. https://doi.org/10.1039/D0DT00283F.

Article  CAS  PubMed  Google Scholar 

Colotti G, Baiocco P, Fiorillo A, et al. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Future Med Chem. 2013;5(15):1861–75. https://doi.org/10.4155/fmc.13.146.

Article  CAS  PubMed  Google Scholar 

Ilari A, Baiocco P, Messori L, et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids. 2012;42(2):803–11. https://doi.org/10.1007/s00726-011-0997-9.

Article  CAS  PubMed  Google Scholar 

Lamarche J, Bierla K, Ouerdane L, Szpunar J, Ronga L, Lobinski R. Mass spectrometry insights into interactions of selenoprotein P with auranofin and cisplatin. J Anal At Spectrom. 2022;37(5):1010–22. https://doi.org/10.1039/D2JA00090C.

Article  CAS  Google Scholar 

Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst. 2005;130(4):442–65. https://doi.org/10.1039/B418265K.

Article  CAS  PubMed  Google Scholar 

Nguyen TTTN, Østergaard J, Gammelgaard B. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection. Anal Bioanal Chem. 2015;407(28):8497–503. https://doi.org/10.1007/s00216-015-8997-3.

Article  CAS  PubMed  Google Scholar 

Kupiec M, Tomaszewska A, Jakubczak W, Haczyk-Więcek M, Pawlak K. Speciation analysis highlights the interactions of auranofin with the cytoskeleton proteins of lung cancer cells. Pharmaceuticals (Basel). 2022;15(10):1285. https://doi.org/10.3390/ph15101285.

Article  CAS  PubMed  Google Scholar 

Kallis GB, Holmgren A. Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem. 1980;255(21):10261–5. https://doi.org/10.1016/S0021-9258(19)70458-X.

Article  CAS  PubMed  Google Scholar 

Giglione C, Boularot A, Meinnel T. Protein N-terminal methionine excision. Cell Mol Life Sci. 2004;61(12):1455–74. https://doi.org/10.1007/s00018-004-3466-8.

Article  CAS  PubMed  Google Scholar 

Pratesi A, Cirri D, Ciofi L, Messori L. Reactions of auranofin and its pseudohalide derivatives with serum albumin investigated through ESI-Q-TOF MS. Inorg Chem. 2018;57(17):10507–10. https://doi.org/10.1021/acs.inorgchem.8b02177.

Article  CAS  PubMed  Google Scholar 

Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes. 2020;8(3). https://doi.org/10.3390/proteomes8030014.

Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of gold(I) monocarbene complexes with protein targets: a theoretical study. Int J Mol Sci. 2019;20(4):820. https://doi.org/10.3390/ijms20040820.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif