Characterization of arsenic species by liquid sampling-atmospheric pressure glow discharge ionization mass spectrometry

Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, van Leeuwen HP, Lobinski R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). 2000;72(8):1453–70.

Szpunar J, Lobinski R, Prange A. Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc. 2003;57(3):102A-12A.

Article  CAS  PubMed  Google Scholar 

Nearing MM, Koch I, Reimer KJ. Complementary arsenic speciation methods: a review. Spectrochim Acta Part B At Spectrosc. 2014;99:150–62.

Article  CAS  Google Scholar 

LeBlanc KL, Mester Z. Compilation of selenium metabolite data in selenized yeasts. Metallomics. 2021;13(6).

Ali I, Aboul-Enein HY. Instrumental methods in metal ion speciation: CRC Press; 2006.

Yang L, Colombini V, Maxwell P, Mester Z, Sturgeon RE. Application of isotope dilution to the determination of methylmercury in fish tissue by solid-phase microextraction gas chromatography–mass spectrometry. J Chromatogr A. 2003;1011(1):135–42.

Article  CAS  PubMed  Google Scholar 

Bouyssiere B, Szpunar J, Lobinski R. Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis. Spectrochim Acta Part B At Spectrosc. 2002;57(5):805–28.

Article  Google Scholar 

Queipo-Abad S, González PR, Martínez-Morillo E, Davis WC, García Alonso JI. Concentration of mercury species in hair, blood and urine of individuals occupationally exposed to gaseous elemental mercury in Asturias (Spain) and its comparison with individuals from a control group formed by close relatives. Sci Total Environ. 2019;672:314–23.

Article  CAS  PubMed  Google Scholar 

Feldmann J, Raab A, Krupp EM. Importance of ICPMS for speciation analysis is changing: future trends for targeted and non-targeted element speciation analysis. Anal Bioanal Chem. 2018;410(3):661–7.

Article  CAS  PubMed  Google Scholar 

Yang L, Ding J, Maxwell P, McCooeye M, Windust A, Ouerdane L, et al. Determination of arsenobetaine in fish tissue by species specific isotope dilution LC-LTQ-orbitrap-MS and standard addition LC-ICPMS. Anal Chem. 2011;83(9):3371–8.

Article  CAS  PubMed  Google Scholar 

Mallet CR, Lu Z, Mazzeo JR. A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Commun Mass Spectrom. 2004;18(1):49–58.

Article  CAS  PubMed  Google Scholar 

Indelicato S, Bongiorno D, Ceraulo L. Recent approaches for chemical speciation and analysis by electrospray ionization (ESI) mass spectrometry. Front Chem. 2021;8.

Bierla K, Chiappetta G, Vinh J, Lobinski R, Szpunar J. Potential of fourier transform mass spectrometry (Orbitrap and Ion Cyclotron Resonance) for speciation of the selenium metabolome in selenium-rich yeast. Front Chem. 2020;8.

Venter A, Nefliu M, Graham Cooks R. Ambient desorption ionization mass spectrometry. TrAC, Trends Anal Chem. 2008;27(4):284–90.

Article  CAS  Google Scholar 

Chernetsova ES, Morlock GE. Ambient desorption ionization mass spectrometry (DART, DESI) and its bioanalytical applications. Bioanal Rev. 2011;3(1):1–9.

Article  Google Scholar 

Gross JH. Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem. 2014;406(1):63–80.

Article  CAS  PubMed  Google Scholar 

Borges DLG, Sturgeon RE, Welz B, Curtius AJ, Mester Z. Ambient mass spectrometric detection of organometallic compounds using direct analysis in real time. Anal Chem. 2009;81(23):9834–9.

Article  CAS  PubMed  Google Scholar 

Vyhnanovský J, Kratzer J, Benada O, Matoušek T, Mester Z, Sturgeon RE, et al. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta. 2018;1005:16–26.

Article  PubMed  Google Scholar 

Pagliano E, Onor M, McCooeye M, D’Ulivo A, Sturgeon RE, Mester Z. Application of direct analysis in real time to a multiphase chemical system: identification of polymeric arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate. Int J Mass Spectrom. 2014;371:42–6.

Article  CAS  Google Scholar 

D’Ulivo L, Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes. Anal Bioanal Chem. 2019;411(8):1569–78.

Article  PubMed  Google Scholar 

Matoušek T, Kratzer J, Sturgeon RE, Mester Z, Musil S. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Anal Bioanal Chem. 2021;413(13):3443–53.

Article  PubMed  Google Scholar 

Shelley JT, Badal SP, Engelhard C, Hayen H. Ambient desorption/ionization mass spectrometry: evolution from rapid qualitative screening to accurate quantification tool. Anal Bioanal Chem. 2018;410(17):4061–76.

Article  CAS  PubMed  Google Scholar 

Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal Chem. 2008;80(8):2646–53.

Article  CAS  PubMed  Google Scholar 

Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM. Atmospheric pressure chemical ionization source. 2. Desorption−ionization for the direct analysis of solid compounds. Anal Chem. 2008;80(8):2654–63.

Article  CAS  PubMed  Google Scholar 

Liu X, Zhu Z. Plasma-mediated vapor generation techniques. In: D'Ulivo A, Sturgeon RE, editors. Vapor Generation Techniques for Trace Element Analysis: Elsevier; 2022. pp. 283–315.

Cserfalvi T, Mezei P. Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry. J Anal At Spectrom. 1994;9(3):345–9.

Article  CAS  Google Scholar 

Webb MR, Andrade FJ, Gamez G, McCrindle R, Hieftje GM. Spectroscopic and electrical studies of a solution-cathode glow discharge. J Anal At Spectrom. 2005;20(11):1218–25.

Article  CAS  Google Scholar 

Marcus RK, Davis WC. An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Analytical Chemistry. 2001;73(13):2903–10.

Article  CAS  PubMed  Google Scholar 

Marcus RK, Quarles CD Jr, Barinaga CJ, Carado AJ, Koppenaal DW. Liquid sampling-atmospheric pressure glow discharge ionization source for elemental mass spectrometry. Anal Chem. 2011;83(7):2425–9.

Article  CAS  PubMed  Google Scholar 

Zhang LX, Marcus RK. Mass spectra of diverse organic species utilizing the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source. J Anal At Spectrom. 2016;31(1):145–51.

Article  Google Scholar 

Marcus RK, Manard BT, Quarles CD. Liquid sampling – atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications. J Anal At Spectrom. 2017;32:704–16.

Article  CAS  Google Scholar 

Kenneth Marcus R, Hoegg ED, Hall KA, Williams TJ, Koppenaal DW. Combined atomic and molecular (CAM) ionization with the liquid sampling-atmospheric pressure glow discharge microplasma. Mass Spectrom Rev. 2023;42(2):652–73.

Article  CAS  PubMed  Google Scholar 

Hoegg ED, Godin S, Szpunar J, Lobinski R, Koppenaal DW, Marcus RK. Ultra-high resolution elemental/isotopic mass spectrometry (m/Δm > 1,000,000): coupling of the liquid sampling-atmospheric pressure glow discharge with an orbitrap mass spectrometer for applications in biological chemistry and environmental analysis. J Am Soc Mass Spectr. 2019;30(7):1163–8.

Article  CAS  Google Scholar 

Williams TJ, Marcus RK. Coupling the liquid sampling – atmospheric pressure glow discharge, a combined atomic and molecular (CAM) ionization source, to a reduced-format mass spectrometer for the analysis of diverse species. J Anal At Spectrom. 2020;35(9):1910–21.

Article  CAS  Google Scholar 

Frankenberger Jr WT. Environmental chemistry of arsenic: CRC Press; 2001.

Zhang LX, Manard BT, Powell BA, Marcus RK. Preliminary assessment of potential for metal-ligand speciation in aqueous solution via the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source: uranyl acetate. Anal Chem. 2015;87(14):7218–25.

Article  CAS  PubMed  Google Scholar 

Hoegg ED, Williams TJ, Bills JR, Marcus RK, Koppenaal DW. A multi-electrode glow discharge ionization source for atomic and molecular mass spectrometry. J Anal At Spectrom. 2020;35(9):1969–78.

Article  CAS  Google Scholar 

Serpe FP, Russo R, Gallo P, Severino L. Method for speciation of organoarsenic in mussels by liquid chromatography coupled to electrospray ionization and QTRAP tandem mass spectrometry. J Food Prot. 2013;76(7):1293–9.

Article  CAS  PubMed  Google Scholar 

Francesconi KA. Applications of liquid chromatography–electrospray ionization-single quadrupole mass spectrometry for determining arsenic compounds in biological samples. Appl Organomet Chem. 2002;16(8):437–45.

Article  Google Scholar 

McSheehy S, Szpunar J, Lobinski R, Haldys V, Tortajada J, Edmonds JS. Characterization of arsenic species in kidney of the clam tridacna derasa by multidimensional liquid chromatography-ICPMS and electrospray time-of-flight tandem mass spectrometry. Anal Chem. 2002;74(10):2370–8.

Article  CAS  PubMed  Google Scholar 

Larsen BR, Astorga-Llorens C, Florêncio MH, Bettencourt AM. Fragmentation pathways of organoarsenical compounds by electrospray ion trap multiple mass spectrometry (MS6). J Chromatogr A. 2001;926(1):167–74.

Article  CAS  PubMed  Google Scholar 

Inoue Y, Date Y, Sakai T, Shimizu N, Yoshida K, Chen H, et al. Identification and quantification by LC-MS and LC-ICP MS of arsenic species in urine of rats chronically exposed to dimethylarsinic acid (DMAA). Appl Organomet Chem. 1999;13(2):81–8.

Article  CAS  Google Scholar 

McSheehy S, Mester Z. The speciation of natural tissues by electrospray-mass spectrometry. I: biosynthesized species, As and Se. TrAC, Trends Anal Chem. 2003;22(4):210–24.

Article  CAS  Google Scholar 

Kuehnelt D, Goessler W, Francesconi KA. Nitrogen purity influences the occurrence of As+ ions in high-performance liquid chromatography/electrospray ionization mass spectrometric analysis of four common arsenosugars. Rapid Commun Mass Sp. 2003;17(7):654

留言 (0)

沒有登入
gif