Development of an analytical method to quantify N-acyl-homoserine lactones in bacterial cultures, river water, and treated wastewater

Bauer WD, Mathesius U. Plant response to bacterial quorum sensing signals. Curr Opin Plant Biol. 2004;7:429. https://doi.org/10.1016/j.pbi.2004.05.008.

Article  CAS  PubMed  Google Scholar 

Miller BM, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99. https://doi.org/10.1146/annurev.micro.55.1.165.

Article  CAS  PubMed  Google Scholar 

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280:295–8. https://doi.org/10.1126/science.280.5361.295.

Article  CAS  PubMed  Google Scholar 

Eberl L, Winson MK, Sternberg C, Stewart GSB, Christiansen SRC, Bycroft B, Williams P, Molin S, Givskov M. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol. 1996;20(1):127–36. https://doi.org/10.1111/j.1365-2958.1996.tb02495.x.

Article  CAS  PubMed  Google Scholar 

Nealson KH, Platt T, Hasting JW. Cellular control of the synthesis and activity of the bacterial luminescent system. Bacteriol. 1970;104:313–22. https://doi.org/10.1128/jb.104.1.313-322.1970.

Article  CAS  Google Scholar 

Decho AW, Frey RL, Ferry JL. Chemical challenges to bacterial AHL signaling in the environment. Chem Rev. 2011;111:86–99. https://doi.org/10.1021/cr100311q.

Article  CAS  PubMed  Google Scholar 

Waters CM, Bassler BI. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46. https://doi.org/10.1146/annurev.cellbio.21.012704.131001.

Article  CAS  PubMed  Google Scholar 

Dickschat JS. Quorum sensing and bacterial biofilms. Nat Prod Rep. 2010;27:343–69. https://doi.org/10.1039/B804469B.

Article  CAS  PubMed  Google Scholar 

Frommberger M, Hertkorn N, Englmann M, Jakoby S, Hartmann A, Kettrup A, Schmitt-Kopplin P. Analysis of N-acylhomoserine lactones after alkaline hydrolysis and anion-exchange solid-phase extraction by capillary zone electrophoresis-mass spectrometry. Electrophoresis. 2005;26:1523–32. https://doi.org/10.1002/elps.200410365.

Article  CAS  PubMed  Google Scholar 

Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Banin GB, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS. A new class of homoserine lactone quorum-sensing signals. Nature. 2008;454:595–9. https://doi.org/10.1038/nature07088.

Article  CAS  PubMed  Google Scholar 

Flemming HC. Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol. 2002;59(6):629–40. https://doi.org/10.1007/s00253-002-1066-9.

Article  CAS  PubMed  Google Scholar 

Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: health aspects and control methods. Front Microbiol. 2018;9:898. https://doi.org/10.3389/fmicb.2018.00898.

Article  PubMed  PubMed Central  Google Scholar 

Dang H, Lovell CR. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 2015;80:1. https://doi.org/10.1128/MMBR.00037-15.

Article  Google Scholar 

Falkinham JO III. Common features of opportunistic premise plumbing pathogens. Int J Environ Res Public Health. 2015;12:4533–45. https://doi.org/10.3390/ijerph120504533.

Article  PubMed  PubMed Central  Google Scholar 

Diggle SP, Whiteley M. Microbe profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology. 2020;166:30–3. https://doi.org/10.1099/mic.0.000860.

Article  CAS  PubMed  Google Scholar 

Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol. 2001;67(4):1865–73. https://doi.org/10.1128/AEM.67.4.1865-1873.2001.

Article  PubMed  PubMed Central  Google Scholar 

Szwetkowski KJ, Falkinham JO III. Methylobacterium spp. as emerging opportunistic premise plumbing pathogens. Pathogens. 2020;9(2):149. https://doi.org/10.3390/pathogens9020149.

Article  PubMed  PubMed Central  Google Scholar 

Flemming HC. Biofouling and me: my Stockholm syndrome with biofilms. Water Res. 2020;173:115576. https://doi.org/10.1016/j.watres.2020.115576.

Article  CAS  PubMed  Google Scholar 

Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol. 2008;74:52–60. https://doi.org/10.1128/AEM.01400-07.

Article  CAS  PubMed  Google Scholar 

de Carvalho CCCR. Marine biofilms: a successful microbial strategy with economic implication. Front Marine Sci. 2018;5:126. https://doi.org/10.3389/fmars.2018.00126.

Article  Google Scholar 

Cataldi TRI, Bianco G, Frommberger M, Schmitt-Kopplin P. Direct analysis of selected N-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:1341–4. https://doi.org/10.1002/rcm.1480.

Article  CAS  PubMed  Google Scholar 

Morin D, Grasland B, Vallée-Réhel K, Chrystèle D, Haras D. On-line high-performance liquid chromatography – mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A. 2003;1002:79–92. https://doi.org/10.1016/S0021-9673(03)00730-1.

Article  CAS  PubMed  Google Scholar 

Frommberger M, Schmitt-Kopplin P, Ping G, Frisch H, Schmid M, Zhang Y, Hartmann A, Kettrup A. A simple and robust set-up for on-column sample preconcentration - nano-liquid chromatography - electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones. Anal Bioanal Chem. 2004;378:1014–20. https://doi.org/10.1007/s00216-003-2400-5.

Article  CAS  PubMed  Google Scholar 

Leipert J, Treitz C, Leippe M, Tholey A. identification and quantification of n-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2017;28:2538–47. https://doi.org/10.1007/s13361-017-1777-x.

Article  CAS  PubMed  Google Scholar 

Hoang TPT, Barthélemy M, Lami R, Stien D, Eparvier V, Touboul D. Annotation and quantification of N-acyl homoserine lactones implied in bacterial quorum sensing by supercritical-fluid chromatography coupled with high-resolution mass spectrometry. Anal Bioanal Chem. 2020;412:2261–76. https://doi.org/10.1007/s00216-019-02265-4.

Article  CAS  PubMed  Google Scholar 

Li X, Fekete A, Englmann M, Götz C, Rothballer M, Frommberger M, Buddrus K, Fekete J, Cai C, Schröder P, Hartmann A, Chen G, Schmitt-Kopplin P. Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. J Chromatogr A. 2006;1134:186–93. https://doi.org/10.1016/j.chroma.2006.09.047.

Article  CAS  PubMed  Google Scholar 

Wang J, Quan C, Wang X, Zhao P, Fan S. Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microbial Biotechnol. 2011;4:479–90. https://doi.org/10.1111/j.1751-7915.2010.00197.x.

Article  CAS  Google Scholar 

Brelles-Marino G, Bedmar EJ. Detection, purification and characterization of quorum-sensing signal molecules in plant-associated bacteria. J Biotechnol. 2001;91:197–209. https://doi.org/10.1016/S0168-1656(01)00330-3.

Article  CAS  PubMed  Google Scholar 

Wang J, Ding L, Li K, Schmieder W, Geng J, Xu K, Zhang Y, Ren H. Development of an extraction method and LC-MS analysis for N-acylated-L-homoserine lactones (AHLs) in wastewater treatment biofilms. J Chromatogr B. 2017;1041–1042:37–44. https://doi.org/10.1016/j.jchromb.2016.11.029.

Article  CAS  Google Scholar 

Sun Y, He K, Yin Q, Echigo S, Wu G, Guan Y. Determination of quorum-sensing signal substances in water and solid phases of activated sludge systems using liquid chromatography-mass spectrometry. J Envrion Sci. 2018;39:85–94. https://doi.org/10.1016/j.jes.2017.04.017.

Article  CAS  Google Scholar 

Huang S, Zhang H, Ng TCA, Xu B, Shi X, Ng HY. Analysis of N-Acyl-L-homoserine lactones (AHLs) in wastewater treatment systems using SPE-LLE with LC-MS/MS. Water Research. 2020;177:115756. https://doi.org/10.1016/j.watres.2020.115756.

Article  CAS  PubMed  Google Scholar 

Ortori CA, Halliday N, Cámara M, Williams P, Barrett DA. LC-MS/MS Quantitative analysis of quorum sensing signal molecules. Pseudomonas Methods and Protocols 2014, 255–270. https://doi.org/10.1007/978-1-4939-0473-0_21

Nürenberg G, Schulz M, Kunkel U, Ternes TA. Development and validation of a generic nontarget method based on liquid chromatography – high resolution mass spectrometry analysis for the evaluation of different wastewater treatment options. J Chromatogr A. 2015;1426:77–90. https://doi.org/10.1016/j.chroma.2015.11.014.

Article  CAS  PubMed  Google Scholar 

Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–30. https://doi.org/10.1021/ac020361s.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif