Rapid and specific detection of thiabendazole: enzymatic digestion-enabled fluorescent aptasensor

Cooper J, Dobson H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007;26(9):1337–48. https://doi.org/10.1016/j.cropro.2007.03.022.

Article  CAS  Google Scholar 

Koutros S, Lynch CF, Ma X, Lee WJ, Hoppin JA, Christensen CH, Andreotti G, Freeman LB, Rusiecki JA, Hou L, Sandler DP, Alavanja MCR. Heterocyclic aromatic amine pesticide use and human cancer risk: results from the U.S. Agricultural Health Study. Int J Cancer. 2009;124(5):1206–12. https://doi.org/10.1002/ijc.24020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amr S, Dawson R, Saleh DA, Magder LS, St George DM, El-Daly M, Squibb K, Mikhail NN, Abdel-Hamid M, Khaled H, Loffredo CA. Pesticides, gene polymorphisms, and bladder cancer among Egyptian agricultural workers. Arch Environ Occup Health. 2015;70(1):19–26. https://doi.org/10.1080/19338244.2013.853646.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alavanja MCR, Dosemeci M, Samanic C, Lubin J, Lynch CF, Knott C, Barker J, Hoppin JA, Sandler DP, Coble J, Thomas K, Blair A. Pesticides and lung cancer risk in the Agricultural Health Study cohort. Am J Epidemiol. 2004;160(9):876–85. https://doi.org/10.1093/aje/kwh290.

Article  PubMed  Google Scholar 

Beane Freeman LE, Bonner MR, Blair A, Hoppin JA, Sandler DP, Lubin JH, Dosemeci M, Lynch CF, Knott C, Alavanja MCR. Cancer incidence among male pesticide applicators in the Agricultural Health Study cohort exposed to diazinon. Am J Epidemiol. 2005;162(11):1070–9. https://doi.org/10.1093/aje/kwi321.

Article  PubMed  Google Scholar 

Kole RK, Banerjee H, Bhattacharyya A. Monitoring of market fish samples for endosulfan and hexachlorocyclohexane residues in and around Calcutta. Bull Environ Contam Toxicol. 2001;67(4):554–9. https://doi.org/10.1007/s001280159.

Article  CAS  PubMed  Google Scholar 

USGS Scientific Investigations Report 2009–5132: Trends in pesticide concentrations in corn-belt streams, 1996–2006. https://pubs.usgs.gov/sir/2009/5132/. Accessed 2021–10–22.

Alsammarraie FK, Lin M, Mustapha A, Lin H, Chen X, Chen Y, Wang H, Huang M. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem. 2018;259:219–25. https://doi.org/10.1016/j.foodchem.2018.03.105.

Article  CAS  PubMed  Google Scholar 

Jamieson JD, Smith EB, Dalvie DK, Stevens GJ, Yanochko GM. Myeloperoxidase-mediated bioactivation of 5-hydroxythiabendazole: a possible mechanism of thiabendazole toxicity. Toxicol In Vitro. 2011;25(5):1061–6. https://doi.org/10.1016/j.tiv.2011.04.007.

Article  CAS  PubMed  Google Scholar 

United States Environmental Protection Agency (EPA). Prevention, pesticides and toxic substances. Reregistration Eligibility Decision (RED) - thiabendazole. USA October 2002, p 2. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100N28R.PDF?Dockey=P100N28R.PDF.

European Parliament COUNCIL DIRECTIVE 98/83/EC, Official Journal. Council Directive 98/83/EC on the quality of water intended for human consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01998L0083-20151027&from=EN. Accessed 2022–11–14.

Rial-Otero R, Gaspar EM, Moura I, Capelo JL. Chromatographic-based methods for pesticide determination in honey: an overview. Talanta. 2007;71(2):503–14. https://doi.org/10.1016/j.talanta.2006.05.033.

Article  CAS  PubMed  Google Scholar 

van der Hoff GR, van Zoonen P. Trace analysis of pesticides by gas chromatography. J Chromatogr A. 1999;843(1–2):301–22. https://doi.org/10.1016/S0021-9673(99)00511-7.

Article  PubMed  Google Scholar 

Núñez O, Moyano E, Galceran MT. LC–MS/MS analysis of organic toxics in food. TrAC, Trends Anal Chem. 2005;24(7):683–703. https://doi.org/10.1016/j.trac.2005.04.012.

Article  CAS  Google Scholar 

Romero-Cano R, Kassuha D, Peris-Vicente J, Roca-Genovés P, Carda-Broch S, Esteve-Romero J. Analysis of thiabendazole, 4-tert-octylphenol and chlorpyrifos in waste and sewage water by direct injection – micellar liquid chromatography. Analyst. 2015;140(5):1739–46. https://doi.org/10.1039/C4AN01782J.

Article  CAS  PubMed  Google Scholar 

Moral A, Sicilia MD, Rubio S. Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination. J Chromatogr A. 2009;1216(18):3740–5. https://doi.org/10.1016/j.chroma.2009.03.018.

Article  CAS  PubMed  Google Scholar 

Martínez-Piernas AB, Plaza-Bolaños P, Gilabert A, Agüera A. Application of a fast and sensitive method for the determination of contaminants of emerging concern in wastewater using a quick, easy, cheap, effective, rugged and safe-based extraction and liquid chromatography coupled to mass spectrometry. J Chromatogr A. 2021;1653: 462396. https://doi.org/10.1016/j.chroma.2021.462396.

Article  CAS  PubMed  Google Scholar 

Wu Q, Li Y, Wang C, Liu Z, Zang X, Zhou X, Wang Z. Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Anal Chim Acta. 2009;638(2):139–45. https://doi.org/10.1016/j.aca.2009.02.017.

Article  CAS  PubMed  Google Scholar 

Yu Q-W, Sun H, Wang K, He H-B, Feng Y-Q. Monitoring of carbendazim and thiabendazole in fruits and vegetables by SiO2@NiO-based solid-phase extraction coupled to high-performance liquid chromatography-fluorescence detector. Food Anal Methods. 2017;10(8):2892–901. https://doi.org/10.1007/s12161-017-0837-y.

Article  Google Scholar 

Halko R, Sanz CP, Ferrera ZS, Rodríguez JJS. Determination of benzimidazole fungicides by HPLC with fluorescence detection after micellar extraction. Chromatographia. 2004;60(3):151–6. https://doi.org/10.1365/s10337-004-0364-z.

Article  CAS  Google Scholar 

López Monzón A, Vega Moreno D, Torres Padrón ME, Sosa Ferrera Z, Santana Rodríguez JJ. Solid-phase microextraction of benzimidazole fungicides in environmental liquid samples and HPLC–fluorescence determination. Anal Bioanal Chem. 2007;387(6):1957–63. https://doi.org/10.1007/s00216-006-1083-0.

Article  CAS  PubMed  Google Scholar 

Sharma SK, Sehgal N, Kumar A. Biomolecules for development of biosensors and their applications. Curr Appl Phys. 2003;3(2–3):307–16. https://doi.org/10.1016/S1567-1739(02)00219-5.

Article  Google Scholar 

Pang S, Yang T, He L. Review of surface enhanced raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC, Trends Anal Chem. 2016;85:73–82. https://doi.org/10.1016/j.trac.2016.06.017.

Article  CAS  Google Scholar 

Chen N, Liu H, Zhang Y, Zhou Z, Fan W, Yu G, Shen Z, Wu A. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens Actuators, B Chem. 2018;255:3093–101. https://doi.org/10.1016/j.snb.2017.09.134.

Article  CAS  Google Scholar 

Luo Q, Yu F, Yang F, Yang C, Qiu P, Wang X. A 3D-printed self-propelled, highly sensitive mini-motor for underwater pesticide detection. Talanta. 2018;183:297–303. https://doi.org/10.1016/j.talanta.2018.02.059.

Article  CAS  PubMed  Google Scholar 

Vinoth Kumar J, Karthik R, Chen S-M, Natarajan K, Karuppiah C, Yang C-C, Muthuraj V. 3D flower-like gadolinium molybdate catalyst for efficient detection and degradation of organophosphate pesticide (fenitrothion). ACS Appl Mater Interfaces. 2018;10(18):15652–64. https://doi.org/10.1021/acsami.8b00625.

Article  CAS  PubMed  Google Scholar 

Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem. 2023. https://doi.org/10.1007/s00216-023-04911-4.

Article  PubMed  Google Scholar 

Abnous K, Danesh NM, Ramezani M, Alibolandi M, Emrani AS, Lavaee P, Taghdisi SM. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Microchim Acta. 2018;185(4):216. https://doi.org/10.1007/s00604-018-2752-3.

Article  CAS  Google Scholar 

Palanivelu J, Chidambaram R. Acetylcholinesterase with mesoporous silica: covalent immobilization, physiochemical characterization, and its application in food for pesticide detection. J Cell Biochem. 2019;120(6):10777–86. https://doi.org/10.1002/jcb.28369.

Article  CAS  PubMed  Google Scholar 

Long Q, Li H, Zhang Y, Yao S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron. 2015;68:168–74. https://doi.org/10.1016/j.bios.2014.12.046.

Article  CAS  PubMed  Google Scholar 

Berkal MA, Palas Q, Ricard E, Lartigau-Dagron C, Ronga L, Toulmé J-J, Parat C, Nardin C. Glyphosate-exonuclease interactions: reduced enzymatic activity as a route to glyphosate biosensing. Macromol Biosci. 2023 e2200508. https://doi.org/10.1002/mabi.202200508.

Lin B, Yu Y, Li R, Cao Y, Guo M. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens Actuators, B Chem. 2016;229:100–9. https://doi.org/10.1016/j.snb.2016.01.114.

Article  CAS  Google Scholar 

Sahub C, Tuntulani T, Nhujak T, Tomapatanaget B. Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens Actuators, B Chem. 2018;258:88–97. https://doi.org/10.1016/j.snb.2017.11.072.

Article  CAS  Google Scholar 

Zor E, Morales-Narváez E, Zamora-Gálvez A, Bingol H, Ersoz M, Merkoçi A. Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl Mater Interfaces. 2015;7(36):20272–9. https://doi.org/10.1021/acsami.5b05838.

Article  CAS  PubMed  Google Scholar 

He L, Jiang ZW, Li W, Li CM, Huang CZ, Li YF. In situ synthesis of gold nanoparticles/metal–organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. ACS Appl Mater Interfaces. 2018;10(34):28868–76. https://doi.org/10.1021/acsami.8b08768.

Article  CAS  PubMed  Google Scholar 

Ouyang H, Tu X, Fu Z, Wang W, Fu S, Zhu C, Du D, Lin Y. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens Bioelectron. 2018;106:43–9. https://doi.org/10.1016/j.bios.2018.01.033.

Article 

留言 (0)

沒有登入
gif