Genome editing in peanuts: advancements, challenges and applications

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Arias RS, Dang PM, Sobolev VS. RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. J Vis Exp. 2015;106: e53398.

Google Scholar 

Azameti MK, Dauda WP. Base editing in plants: applications, challenges, and future prospects. Front Plant Sci. 2021;12: 664997. https://doi.org/10.3389/fpls.2021.664997.

Article  PubMed Central  PubMed  Google Scholar 

Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden ÇY. Gene-editing technologies and applications in legumes: progress, evolution, and future prospects. Front Genet. 2022;13: 859437. https://doi.org/10.3389/fgene.2022.859437.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya AK, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS ONE. 2019;14(12): e0226252. https://doi.org/10.1371/journal.pone.0226252.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bertioli D, Cannon S, Froenicke L, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;48:438–46.

Article  CAS  PubMed  Google Scholar 

Bertioli DJ, Jenkins J, Clevenger J, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet. 2019;51:877–84.

Article  CAS  PubMed  Google Scholar 

Bishi SK, Kumar L, Mahatma MK, Khatediya N, Chauhan SM, Misra JB. Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem. 2015;167:107–14. https://doi.org/10.1016/j.foodchem.2014.06.076.

Article  CAS  PubMed  Google Scholar 

Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int J Mol Sci. 2022;23:9809. https://doi.org/10.3390/ijms2317980.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Blanvillain-Baufume S, Reschke M, Sole M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J. 2017;15:306–17. https://doi.org/10.1111/pbi.12613.

Article  CAS  PubMed  Google Scholar 

Bomireddy D, Gangurde SS, Variath MT, Janila P, Manohar SS, Sharma V, Parmar S, Deshmukh D, Reddisekhar M, Reddy DM, et al. Discovery of major quantitative trait loci and candidate genes for fresh seed dormancy in groundnut. Agronomy. 2022;12:404. https://doi.org/10.3390/agronomy12020404.

Article  CAS  Google Scholar 

Brackett NF, Pomés A, Chapman MD. New frontiers: precise editing of allergen genes using CRISPR. Front Allergy. 2022;17(2): 821107. https://doi.org/10.3389/falgy.2021.821107.

Article  Google Scholar 

Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM. Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol. 1992;90(6):962–9.

Article  CAS  PubMed  Google Scholar 

Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–82.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Curtin SJ, Zhang F, Sander JD, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011;156:466–73.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Department of Biotechnology (DBT). Office Memorandum: Guidelines for the safety assessment of genome edited plants (2022). https://ibkp.dbtindia.gov.in/

Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J. 2008;6(2):135–45.

Article  CAS  PubMed  Google Scholar 

Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 2005;33:5978–90.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, et al. High-efficiency gene targeting in hexaploid wheat using DNAreplicons and CRISPR/Cas9. Plant J. 2017;89:1251–62.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Grabiele M, Chalup L, Robledo G, Seijo G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst Evol. 2012;298:1151–65.

Article  Google Scholar 

Han HW, Yu ST, Wang ZW, Yang Z, Jiang CJ, Wang XZ, et al. In planta genetic transformation to produce CRISPRed high-oleic peanut. Plant Growth Regul. 2023;15:1–9.

Google Scholar 

Hartwell L. Genetics: from genes to genomes. 6th ed. New York: McGraw-Hill Education; 2017.

Google Scholar 

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J. 2014;12(7):934–40. https://doi.org/10.1111/pbi.12201.

Article  CAS  PubMed  Google Scholar 

Hilioti Z, Ganopoulos I, Ajith S, et al. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep. 2016;35:1–15.

Article  Google Scholar 

Hu J, Li S, Li Z, Li H, Song W, Zhao H, Lai J, Xia L, Li D, Zhang Y. A barley stripe mosaic virus-based guide RNAdelivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol. 2019;20:1463–74.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK. Groundnut improvement: use of genetic and genomic tools. Front Plant Sci. 2013;4:23. https://doi.org/10.3389/fpls.2013.00023.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jin M, Chen L, Deng X, Tang X. Development of herbicide resistance genes and their application in rice. Crop J. 2022;10:26–35.

Article  Google Scholar 

Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92(1–2):131–42. https://doi.org/10.1007/s11103-016-0499-y.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jung M, Kim J, Ahn SM. Factors associated with frequency of peanut consumption in Korea: a national population-based study. Nutrients. 2020;12(5):1207.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jung S, Swift D, Sengoku E, et al. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet. 2000;263:796–805. https://doi.org/10.1007/s004380000244.

Article  CAS  PubMed  Google Scholar 

Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010;7:91.

Article  CAS  PubMed  Google Scholar 

Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol J. 2019;18:992–1003.

Article  PubMed Central  PubMed  Google Scholar 

Lee SY, Kang B, Venkatesh J, Lee J, Lee S, Kim J, Back S, et al. Development of virus-induced genome editing methods in Solanaceous crops. Hortic Res. 2024;11(1):233.

Article  Google Scholar 

Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods. 2021;17:20.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Li A, Zhou M, Liao G, Li X, Wang A, Xiao D, et al. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens-mediated pollen tube transformation. Plant Cell Tissue Organ Cult. 2023;155(3):883–92.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif