Targeted genome editing for cotton improvement: prospects and challenges

Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun. 2014;5:3062. https://doi.org/10.1038/ncomms4062.

Article  CAS  PubMed  Google Scholar 

Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9:1911. https://doi.org/10.1038/s41467-018-04252-2.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ahmad S, Anwar F, Hussain AI, Ashraf M, Awan AR. Does soil salinity affect yield and composition of cottonseed oil? J Am Oil Chem Soc. 2007;84:845–51. https://doi.org/10.1007/s11746-007-1115-8.

Article  CAS  Google Scholar 

Ahmed M, Iqbal A, Latif A, Din SU, Sarwar MB, Wang X, Rao AQ, Husnain T, Ali SA. Overexpression of a sucrose synthase gene indirectly improves cotton fibre quality through sucrose cleavage. Front Plant Sci. 2020;11: 476251. https://doi.org/10.3389/fpls.2020.476251.

Article  PubMed Central  PubMed  Google Scholar 

Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed HM. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol Biotechnol. 2023;65:227–42. https://doi.org/10.1007/s12033-022-00501-4.

Article  CAS  PubMed  Google Scholar 

Alberio V, Savy V, Salamone DF. CRISPR-on for Endogenous Activation of SMARCA4 Expression in Bovine Embryos. In: Verma PJ, Sumer H, Liu J, editors. Applications of Genome Modulation and Editing. New York: Springer; 2022. p. 129–48. https://doi.org/10.1007/978-1-0716-2301-5_8.

Chapter  Google Scholar 

Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182:145–61. https://doi.org/10.1016/j.cell.2020.05.021.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Arzani A, Ashraf M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci. 2016;35:146–89. https://doi.org/10.1080/07352689.2016.1245056.

Article  CAS  Google Scholar 

Babu K, Kathiresan V, Kumari P, Newsom S, Parameshwaran HP, Chen X, Liu J, Qin PZ, Rajan R. Coordinated actions of Cas9 HNH and RuvC nuclease domains are regulated by the bridge helix and the target DNA sequence. Biochemistry. 2021;60:3783–800. https://doi.org/10.1021/acs.biochem.1c00354.

Article  CAS  PubMed  Google Scholar 

Bajwa K, Shahid A, Qayyum Rao A, Kiani S, Ashraf M, Dahab A, Bakhsh A, Latif A, Azmat M, Khan U, Puspito A, Aftab A, Bashir A, Husnain T. Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aust J Crop Sci. 2013;7:206–12. https://doi.org/10.3316/informit.260677823917094.

Article  CAS  Google Scholar 

Balasubramani G, Raghavendra KP, Das J, Kumar R, Santosh HB, Amudha J, Kranthi S, Kranthi KR. Critical evaluation of GM cotton. In: Mehboob-ur R, Zafar Y, Zhang T, editors. Cotton precision breeding. Berlin: Springer; 2021. p. 351–410. https://doi.org/10.1007/978-3-030-64504-5_16.

Chapter  Google Scholar 

Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L-SP, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 2019;19:131. https://doi.org/10.1186/s12870-019-1746-6.

Article  PubMed Central  PubMed  Google Scholar 

Bedon F, Ziolkowski L, Walford SA, Dennis ES, Llewellyn DJ. Members of the MYBMIXTA-like transcription factors may orchestrate the initiation of fibre development in cotton seeds. Front Plant Sci. 2014;5:179. https://doi.org/10.3389/fpls.2014.00179.

Article  PubMed Central  PubMed  Google Scholar 

Bhuyan SJ, Kumar M, Devde PR, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed. 2023;5:1272678. https://doi.org/10.3389/fgeed.2023.1272678.

Article  PubMed Central  PubMed  Google Scholar 

Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429–37. https://doi.org/10.1093/nar/gkt520.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Billah M, Li F, Yang Z. Regulatory network of cotton genes in response to salt, drought and wilt diseases (Verticillium and Fusarium): progress and perspective. Front Plant Sci. 2021;12: 759245. https://doi.org/10.3389/fpls.2021.759245.

Article  PubMed Central  PubMed  Google Scholar 

Binyameen B, Khan Z, Khan SH, Ahmad A, Munawar N, Mubarik MS, Riaz H, Ali Z, Khan AA, Qusmani AT, Abd-Elsalam KA. Using multiplexed CRISPR/Cas9 for suppression of cotton leaf curl virus. Int J Mol Sci. 2021;22:12543. https://doi.org/10.3390/ijms222212543.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int J Mol Sci. 2022;23:9809. https://doi.org/10.3390/ijms23179809.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12. https://doi.org/10.1126/science.1178811.

Article  CAS  PubMed  Google Scholar 

Boopathi NM, Hoffmann LV. Genetic diversity, erosion, and population structure in cotton genetic resources. In: Ahuja MR, Jain SM, editors. Genetic diversity and erosion in plants: case histories. Berlin: Springer; 2016. p. 409–38. https://doi.org/10.1007/978-3-319-25954-3_12.

Chapter  Google Scholar 

Boubakri H. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Gene. 2023;866: 147334. https://doi.org/10.1016/j.gene.2023.147334.

Article  CAS  PubMed  Google Scholar 

Bouchabke-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. 2013;32:675–86. https://doi.org/10.1007/s00299-013-1402-9.

Article  CAS  PubMed  Google Scholar 

Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018;18:1–9. https://doi.org/10.1186/s12870-018-1387-1.

Article  CAS  Google Scholar 

Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genom Biol. 2021;22:166. https://doi.org/10.1186/s13059-021-02383-2.

Article  CAS  Google Scholar 

Chen P, Jian H, Wei F, Gu L, Hu T, Lv X, Guo X, Lu J, Ma L, Wang H, Wu A, Mao G, Yu S, Wei H. Phylogenetic analysis of the membrane attack complex/perforin domain-containing proteins in Gossypium and the role of GhMACPF26 in cotton under cold stress. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.684227.

Article  PubMed Central  PubMed  Google Scholar 

Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023;24:161–77. https://doi.org/10.1038/s41576-022-00541-1.

Article  CAS  PubMed  Google Scholar 

Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet. 2019;132:97–112. https://doi.org/10.1007/s00122-018-3197-0.

Article  CAS  PubMed  Google Scholar 

Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep. 2017;7:44304. https://doi.org/10.1038/srep44304.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J. 2021;19(3):424–6. https://doi.org/10.1111/pbi.13507.

Article  CAS  PubMed  Google Scholar 

Chen Y, Zhang JB, Wei N, Liu ZH, Li Y, Zheng Y, Li XB. A type-2C protein phosphatase (GhDRP1) participates in cotton (Gossypium hirsutum) response to drought stress. Plant Mol Biol. 2021;107:499–517. https://doi.org/10.1007/s11103-021-01198-w.

Article  CAS  PubMed  Google Scholar 

Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71. https://doi.org/10.1038/cr.2013.122.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE. 2015;10: e0143022. https://doi.org/10.1371/journal.pone.0143022.

Article 

留言 (0)

沒有登入
gif