Directed mutagenesis in plants through genome editing using guide RNA library

Ali Z, Abul-Faraj A, Piatek M, Mahfouz MM. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav. 2015;10(10):1044191.

Article  Google Scholar 

Ali Z, Ali S, Tashkandi M, Zaidi SSEA, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep. 2016;6(1):1–13.

Google Scholar 

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301(5633):653–7.

Article  PubMed  Google Scholar 

Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci. 2022;119(30):2122150119.

Article  Google Scholar 

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aouida M, Piatek MJ, Bangarusamy DK, Mahfouz MM. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr Genet. 2014;60:61–74.

Article  CAS  PubMed  Google Scholar 

Ariga H, Toki S, Ishibashi K. Potato virus X vector-mediated DNA-free genome editing in plants. Plant Cell Physiol. 2020;61(11):1946–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, et al. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J. 2020;18(3):721–31.

Article  CAS  PubMed  Google Scholar 

Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell. 2014;26(1):151–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkman EK, Chen T, Amendola M, Van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168–e168.

Article  PubMed  PubMed Central  Google Scholar 

Bruckman MA, Czapar AE, VanMeter A, Randolph LN, Steinmetz NF. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. J Control Release. 2016;231:103–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler NM, Baltes NJ, Voytas DF, Douches DS. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci. 2016;7:1045.

Article  PubMed  PubMed Central  Google Scholar 

Butt H, Eid A, Momin AA, Bazin J, Crespi M, Arold ST, et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 2019;20(1):1–9.

Article  Google Scholar 

Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):1609.

Article  Google Scholar 

Chen K, Ke R, Du M, Yi Y, Chen Y, Wang X, et al. A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Mol Plant. 2022;15(2):243–57.

Article  CAS  PubMed  Google Scholar 

Chen Y, Xiang H, Jia L, Yang Q, Zhang J, Jiang J, et al. High-throughput creation of Nicotiana tabacum gene-targeted mutants based on CRISPR/Cas9. Plant Cell Rep. 2023;42(12):2039–42.

Article  CAS  PubMed  Google Scholar 

Chin JS, Chooi WH, Wang H, Ong W, Leong KW, Chew SY. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Acta Biomater. 2019;90:60–70.

Article  CAS  PubMed  Google Scholar 

Cody WB, Scholthof HB, Mirkov TE. Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector. Plant Physiol. 2017;175(1):23–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, et al. Agrobacterium strains and strain improvement: present and outlook. Biotechnol Adv. 2021;53: 107677.

Article  PubMed  Google Scholar 

Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv. 2020;6(26):495.

Article  Google Scholar 

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol. 2019;14(5):456–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127(7):1309–21.

Article  CAS  PubMed  Google Scholar 

Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol. 2014;32(12):1262–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

Article  PubMed  Google Scholar 

Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet. 2021;12: 673286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature. 2005;436(7048):221–6.

Article  CAS  PubMed  Google Scholar 

Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods. 2006;3(10):777–9.

Article  CAS  PubMed  Google Scholar 

Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants. 2020;6(6):620–4.

Article  CAS  PubMed  Google Scholar 

Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79(2):348–59.

Article  CAS  PubMed  Google Scholar 

Feldman D, Singh A, Schmid-Burgk JL, Carlson RJ, Mezger A, Garrity AJ, et al. Optical pooled screens in human cells. Cell. 2019;179(3):787–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

Article  CAS  PubMed  Google Scholar 

Gaillochet C, Develtere W, Jacobs TB. CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell. 2021;33(4):794–813.

Article  PubMed  PubMed Central  Google Scholar 

Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184(6):1621–35.

Article  CAS  PubMed  Google Scholar 

Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.

Article  CAS  PubMed  Google Scholar 

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 2017;89(6):1251–62.

留言 (0)

沒有登入
gif