Identification and validation of defense related candidate genes in Sesamum under artificial inoculation of Macrophomina phaseolina

Abbas S, Kamran M, Sibt-E-Abbas M, Teferra TF, Tauseef M, Anwar MJ. Nutritional and therapeutic potential of sesame seeds. J Food Qual. 2022. https://doi.org/10.1155/2022/6163753.

Article  Google Scholar 

Aci MM, Tsalgatidou PC, Boutsika A, Dalianis A, Michaliou M, Delis C, et al. Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated to pear petal defense responses against Monilinia laxa. Front Plant Sci. 2024;15:554. https://doi.org/10.3389/fpls.2024.1377937.

Article  Google Scholar 

Akhtar KP, Sarwar G, Arshad HMI. Temperature response, pathogenicity, seed infection and mutant evaluation against Macrophomina phaseolina causing charcoal rot disease of sesame. Arch Phytopathol Plant Protect. 2011;44(4):320–30. https://doi.org/10.1080/03235400903052945.

Article  Google Scholar 

Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33(21):3387–95. https://doi.org/10.1093/bioinformatics/btx431.

Article  CAS  PubMed  Google Scholar 

de Abreu-Neto JB, Turchetto-Zolet AC, de Oliveira LF, Bodanese Zanettini MH, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 2013;280(7):1604–16. https://doi.org/10.1111/febs.12159.

Article  CAS  PubMed  Google Scholar 

Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis Gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54. https://doi.org/10.1104/pp.108.121038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bang SW, Choi S, Jin X, Jung SE, Choi JW, Seo JS, et al. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnol J. 2022;20(4):736–47. https://doi.org/10.1111/pbi.13752.

Article  CAS  PubMed  Google Scholar 

Bart RS, Chern M, Vega-Sánchez ME, Canlas P, Ronald PC. Rice Snl6, a Cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv oryzae. PLoS Genet. 2010;6(9):e1001123. https://doi.org/10.1371/journal.pgen.1001123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauer K, Nayem S, Lehmann M, Wenig M, Shu LJ, Ranf S, et al. β-D-XYLOSIDASE 4 modulates systemic immune signaling in Arabidopsis thaliana. Front Plant Sci. 2023;13:1096800. https://doi.org/10.3389/fpls.2022.1096800.

Article  PubMed  PubMed Central  Google Scholar 

Battaglia M, Covarrubias AA. Late Embryogenesis Abundant (LEA) proteins in legumes. Front Plant Sci. 2013;4:45960. https://doi.org/10.3389/fpls.2013.00190.

Article  CAS  Google Scholar 

Berrocal-Lobo M, Molina A, et al. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002;29(1):23–32. https://doi.org/10.1046/j.1365-313x.2002.01191.x.

Article  CAS  PubMed  Google Scholar 

Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in arabidopsis offers tailored protection against abiotic stress. Plant Cell. 2014;26(7):3148–66. https://doi.org/10.1105/tpc.114.127316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chai G, Li C, Xu F, Li Y, Shi X, Wang Y, et al. Three endoplasmic reticulum-associated fatty acyl-coenzyme reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2018;18(1):1–16. https://doi.org/10.1186/s12870-018-1256-y.

Article  CAS  Google Scholar 

Chen Q-F, Xu L, Tan W-J, Chen L, Qi H, Xie L-J, et al. Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Cell Com. 2015. https://doi.org/10.1016/j.molp.2015.06.009.

Article  Google Scholar 

Cohen R, Elkabetz M, Paris HS, Gur A, Dai N, Rabinovitz O, et al. Occurrence of Macrophomina phaseolina in Israel: challenges for disease management and crop Germplasm enhancement. Plant Dis. 2022;106(1):15–25. https://doi.org/10.1094/PDIS-07-21-1390-FE.

Article  CAS  PubMed  Google Scholar 

Comini E, Rubiales D, Reveglia P. Variability of fatty acid composition and lignan content in sesame Germplasm, and effect of roasting. ACS Food Sci Technol. 2023;3(10):1747–58. https://doi.org/10.1021/acsfoodscitech.3c00304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daras G, Templalexis D, Avgeri F, Tsitsekian D, Karamanou K, Rigas S. Updating insights into the catalytic domain properties of plant cellulose synthase (Cesa) and cellulose synthase-like (csl) proteins. Molecules. 2021;26(14):4335. https://doi.org/10.3390/molecules26144335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhar N, Caruana J, Erdem I, Subbarao KV, Klosterman SJ, Raina R. The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 regulates dark-induced senescence and plays contrasting roles in defense against bacterial and fungal pathogens. Molecular Plant-Microbe Interactions®. 2020;33(5):754–66. https://doi.org/10.1094/MPMI-11-19-0329-R.

Article  CAS  PubMed  Google Scholar 

Doan TTP, Domergue F, Fournier AE, Vishwanath SJ, Rowland O, Moreau P, et al. Biochemical characterization of a chloroplast localized fatty acid reductase from Arabidopsis thaliana. Biochim Biophys Acta Mol Cell Biol Lipids. 2012;1821:1244–55. https://doi.org/10.1016/j.bbalip.2011.10.019.

Article  CAS  Google Scholar 

Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, et al. The emerging oilseed crop Sesamum indicum enters the “Omics” era. Front Plant Sci. 2017;8:964. https://doi.org/10.3389/fpls.2017.01154.

Article  Google Scholar 

Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, Moller I, et al. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol. 2015;15(1):1–11. https://doi.org/10.1186/s12870-015-0548-8.

Article  CAS  Google Scholar 

Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 2019;38(7):e100353. https://doi.org/10.15252/embj.2018100353.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dutta D, Awon VK, Gangopadhyay G. Transcriptomic dataset of cultivated (Sesamum indicum), wild (S. mulayanum), and interspecific hybrid sesame in response to induced Macrophomina phaseolina infection. Data Brief. 2020;33:106448. https://doi.org/10.1016/j.dib.2020.106448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dutta D, Awon VK, Gangopadhyay G. Amino acid substitution in the conserved motifs of a hypothetical R-protein in sesame imparts a significant effect on ADP binding position and hydrogen bond interaction. Physiol Mol Plant Pathol. 2021;113: 101588. https://doi.org/10.1016/j.pmpp.2020.101588.

Article  CAS  Google Scholar 

Eynck C, Séguin-Swartz G, Clarke WE, Parkin IAP. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol. 2012;13(8):887–99. https://doi.org/10.1111/j.1364-3703.2012.00798.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu M-C, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Hen-Ming W, Cheung AY, Dinneny JR. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol. 2018;28(5):666-675.e5. https://doi.org/10.1016/j.cub.2018.01.023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Z, Zeng L, Kosma D, Xia Y, Ziv C, Zhao Z, et al. Multifunctional roles of plant cuticle during plant-pathogen interactions. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01088.

Article  PubMed  PubMed Central  Google Scholar 

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–8. https://doi.org/10.1093/nar/gkg563.

Article  CAS  PubMed  PubMed Central  Google Scholar 

German L, Yeshvekar R, Benitez-Alfonso Y. Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. Plant Cell Environ. 2023;46(2):391–404. https://doi.org/10.1111/pce.14510.

Article  CAS  PubMed  Google Scholar 

Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, et al. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 2003;36(3):353–65. https://doi.org/10.1046/j.1365-313x.2003.01877.x.

Article  CAS  PubMed  Google Scholar 

Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Planta VB, et al. Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta. 2003;217(2):218–28. https://doi.org/10.1007/s00425-003-0987-6.

Article  CAS  PubMed  Google Scholar 

Gronnier J, Franck CM, Stegmann M, Defalco TA, Abarca A, von Arx M, et al. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. Elife. 2022;11:e1011087. https://doi.org/10.1371/journal.pgen.1011087.

Article  CAS 

留言 (0)

沒有登入
gif