Which is the optimal choice for neonates’ formula or breast milk?

Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: a review. Trends Food Sci Technol. 2021. https://doi.org/10.1016/j.tifs.2021.03.040.

Article  Google Scholar 

Craft KM, Townsend SD. Mother knows best: deciphering the antibacterial properties of human milk oligosaccharides. Acc Chem Res. 2019. https://doi.org/10.1021/acs.accounts.8b00630.

Article  PubMed  Google Scholar 

Amissah EA, Brown J, Harding JE. Carbohydrate supplementation of human milk to promote growth in preterm infants. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD000280.pub2.

Article  PubMed  PubMed Central  Google Scholar 

Lonnerdal B. Bioactive proteins in breast milk. J Paediatr Child Health. 2013. https://doi.org/10.1111/jpc.12104.

Article  PubMed  Google Scholar 

Koletzko B. Human milk lipids. Ann Nutr Metab. 2016. https://doi.org/10.1159/000452819.

Article  PubMed  Google Scholar 

Iyengar SR, Walker WA. Immune factors in breast milk and the development of atopic disease. J Pediatr Gastroenterol Nutr. 2012. https://doi.org/10.1097/MPG.0b013e3182617a9d.

Article  PubMed  Google Scholar 

Organization WH. EN Nutrition—Publications—Infant feeding—Implementing the global strategy for infant and young child feeding. 2003.

Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007. https://doi.org/10.1093/ajcn/85.6.1457.

Article  PubMed  Google Scholar 

Novak EM, Dyer RA, Innis SM. High dietary omega-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res. 2008. https://doi.org/10.1016/j.brainres.2008.07.107.

Article  PubMed  Google Scholar 

Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J Pediatr. 2010. https://doi.org/10.1016/j.jpeds.2009.11.014.

Article  PubMed  Google Scholar 

Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients. 2011. https://doi.org/10.3390/nu3040442.

Article  PubMed  PubMed Central  Google Scholar 

Fox A, Marino J, Amanat F, Krammer F, Hahn-Holbrook J, Zolla-Pazner S, et al. Evidence of a significant secretory-IgA-dominant SARS-CoV-2 immune response in human milk following recovery from COVID-19. medRxiv Infect Dis. 2020. https://doi.org/10.1101/2020.05.04.20089995.

Article  Google Scholar 

Jessica Fanzo AL, Landis L, Astralaga M. 2018 Global Nutrition Report: Shining a light to spur action on nutrition. United Nations System Standing Committee on Nutrition. 2018.

Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. The Lancet. 2016. https://doi.org/10.1016/s0140-6736(15)01024-7.

Article  PubMed  Google Scholar 

Escuder-Vieco D, Garcia-Algar O, Joya X, Marchei E, Pichini S, Pacifici R, et al. Breast milk and hair testing to detect illegal drugs, nicotine, and caffeine in donors to a human milk bank. J Hum Lact. 2016. https://doi.org/10.1177/0890334416648110.

Article  PubMed  Google Scholar 

Morriss FH, Brewer ED, Spedale SB, Riddle L, Temple DM, Caprioli RM, et al. Relationship of human milk pH during course of lactation to concentrations of citrate and fatty acids. Pediatrics. 1986. https://doi.org/10.1542/peds.78.3.458.

Article  PubMed  Google Scholar 

Sunarić S, Jovanović T, Spasić A, Denić M, Kocić G. Comparative analysis of the physicochemical parameters of breast milk, starter infant formulas and commercial cow milks in Serbia. Acta Facultatis Medicae Naissensis. 2016. https://doi.org/10.1515/afmnai-2016-0011.

Article  Google Scholar 

Salamanca-Grosso G, Osorio-Tangarife MP, Romero-Acosta KF. Calidad fisicoquímica y microbiológica de la leche materna de madres donantes colombianas. Revista chilena de nutrición. 2019. https://doi.org/10.4067/s0717-75182019000400409.

Article  Google Scholar 

Berkow SE, Freed LM, Hamosh M, Bitman J, Larry Wood D, Happ B, et al. Lipases and lipids in human milk: effect of freeze-thawing and storage. Pediatr Res. 1984. https://doi.org/10.1203/00006450-198412000-00006.

Article  PubMed  Google Scholar 

Erickson T, Gill G, Chan GM. The effects of acidification on human milk’s cellular and nutritional content. J Perinatol. 2012. https://doi.org/10.1038/jp.2012.117.

Article  PubMed  Google Scholar 

Fox PF, Uniacke-Lowe T, Mcsweeney PLH, O’Mahony JA. Dairy chemistry and biochemistry. Springer Cham. 2015. https://doi.org/10.1007/978-3-319-14892-2.

Article  Google Scholar 

Anderson PO. Unusual milk colors. Breastfeed Med. 2018. https://doi.org/10.1089/bfm.2018.0015.

Article  PubMed  PubMed Central  Google Scholar 

Hermann S, Nolson B. Breast cancer diagnosis while breastfeeding: when two worlds collide. Womens Health. 2012. https://doi.org/10.1111/j.1552-6909.2012.01363.x.

Borràs Novell C, Balcells Esponera C, Aldecoa-Bilbao V, Rodríguez-Miguélez JM, Herranz Barbero A. Breast milk with unusual colour. Medicina Clínica (English Edition). 2020. https://doi.org/10.1016/j.medcle.2019.04.040.

Article  Google Scholar 

Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr. 2011. https://doi.org/10.1016/j.clnu.2010.08.003.

Article  PubMed  Google Scholar 

Ziegler EE, Fomon SJ. Lactose enhances mineral absorption in infancy. J Pediatr Gastroenterol Nutr 1983.

Coppa GV, Gabrielli O, Pierani P, Catassi C, Giorgi PL. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics. 1993;91:637.

Article  CAS  PubMed  Google Scholar 

Morozov V, Hansman G, Hanisch FG, Schroten H, Kunz C. Human milk oligosaccharides as promising antivirals. Mol Nutr Food Res. 2018. https://doi.org/10.1002/mnfr.201700679.

Article  PubMed  Google Scholar 

Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr. 2005. https://doi.org/10.1093/jn/135.5.1304.

Article  PubMed  Google Scholar 

Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005. https://doi.org/10.1146/annurev.nutr.25.050304.092553.

Article  PubMed  Google Scholar 

Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015. https://doi.org/10.1016/j.earlhumdev.2015.08.013.

Article  PubMed  Google Scholar 

German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr Workshop Ser Pediatr Program. 2008. https://doi.org/10.1159/000146322.

Article  PubMed  PubMed Central  Google Scholar 

Kulinich A, Liu L. Human milk oligosaccharides: the role in the fine-tuning of innate immune responses. Carbohydr Res. 2016. https://doi.org/10.1016/j.carres.2016.07.009.

Article  PubMed  Google Scholar 

Cheng L, Akkerman R, Kong C, Walvoort MTC, de Vos P. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit Rev Food Sci Nutr. 2021. https://doi.org/10.1080/10408398.2020.1754756.

Article  PubMed  Google Scholar 

Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013. https://doi.org/10.1016/j.pcl.2012.10.002.

Article  PubMed  PubMed Central  Google Scholar 

Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0021313.

Article  PubMed  PubMed Central  Google Scholar 

Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012. https://doi.org/10.3945/ajcn.112.037382.

Article  PubMed  Google Scholar 

Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009. https://doi.org/10.1086/595011.

Article  PubMed  Google Scholar 

Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013. https://doi.org/10.1586/eri.13.12.

Article  PubMed  Google Scholar 

Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016. https://doi.org/10.1155/2016/2475067.

Article  PubMed  PubMed Central  Google Scholar 

Ackerman DL, Craft KM, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA, et al. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect Dis. 2018. https://doi.org/10.1021/acsinfecdis.7b00183.

Article  PubMed  Google Scholar 

Craft KM, Townsend SD. Synthesis of lacto-N-tetraose. Carbohydr Res. 2017. https://doi.org/10.1016/j.carres.2017.02.001.

Article 

留言 (0)

沒有登入
gif