Anderson SL, Ekstein J, Donnelly MC, Keefe EM, Toto NR, LeVoci LA et al (2004) Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum Genet 115:185–190
Article CAS PubMed Google Scholar
Bang M-L, Gregorio C, Labeit S (2002) Molecular dissection of the interaction of desmin with the C-terminal region of nebulin. J Struct Biol 137:119–127
Article CAS PubMed Google Scholar
Bang M-L, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU et al (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916
Article CAS PubMed PubMed Central Google Scholar
Brenner B (1986) The cross-bridge cycle in muscle. Mechanical, biochemical, and structural studies on single skinned rabbit psoas fibers to characterize cross-bridge kinetics in muscle for correlation with the actomyosin-ATPase in solution. Controversial issues in cardiac pathophysiology: Erwin Riesch Symposium, July 12/13, 1985. Springer, City, pp 1–15
Brogna S, Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16:107–113
Article CAS PubMed Google Scholar
Campbell KB, Chandra M, Kirkpatrick RD, Slinker BK, Hunter WC (2004) Interpreting cardiac muscle force-length dynamics using a novel functional model. Am J Physiol Heart and Circ Physiol 286:H1535–H1545
Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, Schmitz-Abe K, DeChene ET, Swanson LC et al (2013) Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 81:1205–1214
Article CAS PubMed PubMed Central Google Scholar
Chandra M, Mamidi R, Ford S, Hidalgo C, Witt C, Ottenheijm C et al (2009) Nebulin alters cross-bridge cycling kinetics and increases thin filament activation: a novel mechanism for increasing tension and reducing tension cost. J Biol Chem 284:30889–30896
Article CAS PubMed PubMed Central Google Scholar
Chandra V, Gollapudi SK, Chandra M (2015) Rat cardiac troponin T mutation (F72L)-mediated impact on thin filament cooperativity is divergently modulated by α-and β-myosin heavy chain isoforms. Am J of Physiol Heart Circ Physiol 309:H1260–H1270
Conover GM, Henderson SN, Gregorio CC (2009) A myopathy-linked desmin mutation perturbs striated muscle actin filament architecture. Mol Biol Cell 20:834–845
Article CAS PubMed PubMed Central Google Scholar
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM (2021) Twelve years of SAMtools and BCFtools. Gigascience 10: giab008
de Sousa AR, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5:1512–1526
de Winter JM, Buck D, Hidalgo C, Jasper JR, Malik FI, Clarke NF et al (2013) Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations. J Med Genet 50:383–392
de Winter JM, Joureau B, Sequeira V, Clarke NF, van der Velden J, Stienen GJ et al (2015) Effect of levosimendan on the contractility of muscle fibers from nemaline myopathy patients with mutations in the nebulin gene. Skeletal muscle 5:1–10
de Winter JM, Molenaar JP, Yuen M, van der Pijl R, Shen S, Conijn S et al (2020) KBTBD13 is an actin-binding protein that modulates muscle kinetics. J Clin Invest 130:754–767. https://doi.org/10.1172/JCI124000
Article PubMed PubMed Central Google Scholar
de Winter JM, Ottenheijm CAC (2017) Sarcomere dysfunction in nemaline myopathy. J Neuromuscul Dis 4:99–113. https://doi.org/10.3233/JND-160200
Article PubMed PubMed Central Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
Article CAS PubMed Google Scholar
Donkervoort S, Papadaki M, de Winter JM, Neu MB, Kirschner J, Bolduc V et al (2015) TPM3 deletions cause a hypercontractile congenital muscle stiffness phenotype. Ann Neurol 78:982–994. https://doi.org/10.1002/ana.24535
Article CAS PubMed PubMed Central Google Scholar
Donner K, Sandbacka M, Lehtokari V-L, Wallgren-Pettersson C, Pelin K (2004) Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. Eur J Hum Genet 12:744–751
Article CAS PubMed Google Scholar
Evans JM, Cox ML, Huska J, Li F, Gaitero L, Guo LT et al (2016) Exome sequencing reveals a nebulin nonsense mutation in a dog model of nemaline myopathy. Mamm Genome 27:495–502
Article CAS PubMed PubMed Central Google Scholar
Fabiato A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 75:463–505
Fomin A, Gärtner A, Cyganek L, Tiburcy M, Tuleta I, Wellers L et al (2021) Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations. Science translational medicine 13:eabd3079
Article CAS PubMed Google Scholar
Ford SJ, Chandra M, Mamidi R, Dong W, Campbell KB (2010) Model representation of the nonlinear step response in cardiac muscle. J Gen Physiol 136:159–177
Article CAS PubMed PubMed Central Google Scholar
Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2005) Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle. Pflugers Arch 449:449–457
Article CAS PubMed Google Scholar
Gohlke J, Tonino P, Lindqvist J, Smith JE III, Granzier H (2020) The number of Z-repeats and super-repeats in nebulin greatly varies across vertebrates and scales with animal size. J Gen Physiol 153:e202012783
Article PubMed Central Google Scholar
Gollapudi SK, Reda SM, Chandra M (2017) Omecamtiv mecarbil abolishes length-mediated increase in guinea pig cardiac myofiber Ca2+ sensitivity. Biophys J 113:880–888
Article CAS PubMed PubMed Central Google Scholar
Granzier HL, Akster HA, Ter Keurs HE (1991) Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol 260:C1060-1070. https://doi.org/10.1152/ajpcell.1991.260.5.C1060
Article CAS PubMed Google Scholar
Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S et al (2015) Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349:982–986
Article CAS PubMed PubMed Central Google Scholar
Hoek TA, Khuperkar D, Lindeboom RG, Sonneveld S, Verhagen BM, Boersma S et al (2019) Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay. Mol Cell 75(324–339):e311
Kaplinsky E, Mallarkey G (2018) Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil. Drugs in context 7:212518
Article PubMed PubMed Central Google Scholar
Kapustin Y, Chan E, Sarkar R, Wong F, Vorechovsky I, Winston RM et al (2011) Cryptic splice sites and split genes. Nucleic Acids Res 39:5837–5844
Article CAS PubMed PubMed Central Google Scholar
Kiiski K, Lehtokari V-L, Löytynoja A, Ahlstén L, Laitila J, Wallgren-Pettersson C et al (2016) A recurrent copy number variation of the NEB triplicate region: only revealed by the targeted nemaline myopathy CGH array. Eur J Hum Genet 24:574–580
Article CAS PubMed Google Scholar
Kiiski KJ, Lehtokari V-L, Vihola AK, Laitila JM, Huovinen S, Sagath LJ et al (2019) Dominantly inherited distal nemaline/cap myopathy caused by a large deletion in the nebulin gene. Neuromuscul Disord 29:97–107
Kim Y-g, Ha C, Shin S, Park J-h, Jang J-H, Kim J-W (2023) Enrichment of titin-truncating variants in exon 327 in dilated cardiomyopathy and its relevance to reduced nonsense-mediated mRNA decay efficiency. Front Genet 13:1087359
Article PubMed PubMed Central Google Scholar
Kiss B, Gohlke J, Tonino P, Hourani Z, Kolb J, Strom J et al (2020) Nebulin and Lmod2 are critical for specifying thin-filament length in skeletal muscle. Sci Adv 6:eabc1992
Article CAS PubMed PubMed Central Google Scholar
Labeit S, Ottenheijm CA, Granzier H (2011) Nebulin, a major player in muscle health and disease. FASEB J 25:822–829
Article CAS PubMed PubMed Central Google Scholar
Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513
Comments (0)