Gene Editing for the Treatment of Hypercholesterolemia

Kannel WB, Wilson PW. Efficacy of lipid profiles in prediction of coronary disease. Am Heart J. 1992;124:768–74. https://doi.org/10.1016/0002-8703(92)90288-7.

Article  CAS  PubMed  Google Scholar 

Gordon T, Kannel WB, Castelli WP, Dawber TR. Lipoproteins, cardiovascular disease, and death. The Framingham study Arch Intern Med. 1981;141:1128–31.

Article  CAS  PubMed  Google Scholar 

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Tsao CW Heart Disease and Stroke Statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–743. https://doi.org/10.1161/CIR.0000000000000950.

Article  PubMed  Google Scholar 

Annual Report 2021 Dutch Heart Foundation / Jaarverslag 2021 Hartstichting (https://magazines.hartstichting.nl/jaarverslag-2021/downloaden-jaarverslag).

Taylor F, Ward K, Moore TH, Burke M, Davey Smith G, Casas JP, Ebrahim S. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011:CD004816. https://doi.org/10.1002/14651858.CD004816.pub4.

Zhu Y, Chiang CW, Wang L, Brock G, Milks MW, Cao W, Zhang P, Zeng D, Donneyong M, Li L. A multistate transition model for statin-induced myopathy and statin discontinuation. CPT Pharmacometrics Syst Pharmacol. 2021;10:1236–44. https://doi.org/10.1002/psp4.12691.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginn SL, Christina S, Alexander IE. Genome editing in the human liver: progress and translational considerations. Prog Mol Biol Transl Sci. 2021;182:257–88. https://doi.org/10.1016/bs.pmbts.2021.01.030.

Article  CAS  PubMed  Google Scholar 

Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, Furth EE, Propert KJ, Robinson MB, Magosin S, Simoes H, Speicher L, Hughes J, Tazelaar J, Wivel NA, Wilson JM, Batshaw ML. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther. 2002;13:163–75. https://doi.org/10.1089/10430340152712719.

Article  CAS  PubMed  Google Scholar 

Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80:148–58. https://doi.org/10.1016/j.ymgme.2003.08.016.

Article  CAS  PubMed  Google Scholar 

Pipe SW, Leebeek FWG, Recht M, Key NS, Castaman G, Miesbach W, Lattimore S, Peerlinck K, Van der Valk P, Coppens M, Kampmann P, Meijer K, O’Connell N, Pasi KJ, Hart DP, Kazmi R, Astermark J, Hermans CRJR, Klamroth R, Lemons R, Visweshwar N, von Drygalski A, Young G, Crary SE, Escobar M, Gomez E, Kruse-Jarres R, Quon DV, Symington E, Wang M, Wheeler AP, Gut R, Liu YP, Dolmetsch RE, Cooper DL, Li Y, Goldstein B, Monahan PE. Gene therapy with etranacogene dezaparvovec for hemophilia b. N Engl J Med. 2023;388:706–18. https://doi.org/10.1056/NEJMoa2211644.

Article  CAS  PubMed  Google Scholar 

Rensen PC, Sliedregt LA, Ferns M, Kieviet E, van Rossenberg SM, van Leeuwen SH, van Berkel TJ, Biessen EA. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem. 2001;276:37577–84. https://doi.org/10.1074/jbc.M101786200.

Article  CAS  PubMed  Google Scholar 

Biessen EA, Sliedregt-Bol K, T Hoen PA, Prince P, Van der Bilt E, Valentijn AR, Meeuwenoord NJ, Princen H, Bijsterbosch MK, Van der Marel GA, Van Boom JH, Van Berkel TJ. Design of a targeted peptide nucleic acid prodrug to inhibit hepatic human microsomal triglyceride transfer protein expression in hepatocytes. Bioconjug Chem. 2002:13:295–302 https://doi.org/10.1021/bc015550g.

Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, Taneja N, O’Shea J, Shaikh S, Zhang L, van der Sluis RJ, Jung ME, Akinc A, Hutabarat R, Kuchimanchi S, Fitzgerald K, Zimmermann T, van Berkel TJ, Maier MA, Rajeev KG, Manoharan M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61. https://doi.org/10.1021/ja505986a.

Article  CAS  PubMed  Google Scholar 

Kasiewicz LN, Biswas S, Beach A, Ren H, Dutta C, Mazzola AM, Rohde E, Chadwick A, Cheng C, Garcia SP, Iyer S, Matsumoto Y, Khera AV, Musunuru K, Kathiresan S, Malyala P, Rajeev KG, Bellinger AM. GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat Commun. 2023;14:2776. https://doi.org/10.1038/s41467-023-37465-1.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, Emdin CA, Bick AG, Morrison AC, Brody JA, Gupta N, Nomura A, Kessler T, Duga S, Bis JC, van Duijn CM, Cupples LA, Psaty B, Rader DJ, Danesh J, Schunkert H, McPherson R, Farrall M, Watkins H, Lander E, Wilson JG, Correa A, Boerwinkle E, Merlini PA, Ardissino D, Saleheen D, Gabriel S, Kathiresan S. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67:2578–89. https://doi.org/10.1016/j.jacc.2016.03.520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao H, Li Y, He L, Pu W, Yu W, Li Y, Wu YT, Xu C, Wei Y, Ding Q, Song BL, Huang H, Zhou B. In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation. 2020;141:67–79. https://doi.org/10.1161/CIRCULATIONAHA.119.042476.

Article  CAS  PubMed  Google Scholar 

Jarrett KE, Lee CM, Yeh YH, Hsu RH, Gupta R, Zhang M, Rodriguez PJ, Lee CS, Gillard BK, Bissig KD, Pownall HJ, Martin JF, Bao G, Lagor WR. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep. 2017;7:44624. https://doi.org/10.1038/srep44624.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5. https://doi.org/10.1038/ng1509.

Article  CAS  PubMed  Google Scholar 

Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72. https://doi.org/10.1056/NEJMoa054013.

Article  CAS  PubMed  Google Scholar 

Dugré N, Lindblad AJ, Perry D, Allan GM, Braschi É, Falk J, Froentjes L, Garrison SR, Kirkwood JEM, Korownyk CS, McCormack JP, Moe SS, Paige A, Potter J, Thomas BS, Ton J, Young J, Weresch J, Kolber MR. Lipid-lowering therapies for cardiovascular disease prevention and management in primary care: PEER umbrella systematic review of systematic reviews. Can Fam Physician. 2023;69:701–11. https://doi.org/10.46747/cfp.6910701.

Article  PubMed  PubMed Central  Google Scholar 

Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92. https://doi.org/10.1161/CIRCRESAHA.115.304351.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91. https://doi.org/10.1038/nature14299.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chadwick AC, Wang X, Musunuru K. In vivo base editing of PCSK9 (proprotein convertase Subtilisin/Kexin Type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol. 2017;37:1741–7. https://doi.org/10.1161/ATVBAHA.117.309881.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, Wang Q, Guo Y, Dong Y, Tan X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017;27:440–3. https://doi.org/10.1038/cr.2017.16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Wang L, Xie Y, Wang P, Deng S, Qin A, Zhang J, Yu X, Zheng W, Jiang X. Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angew Chem Int Ed Engl. 2019;58:12404–8. https://doi.org/10.1002/anie.201903618.

Article  CAS  PubMed  Google Scholar 

Wang L, Smith J, Breton C, Clark P, Zhang J, Ying L, Che Y, Lape J, Bell P, Calcedo R, Buza EL, Saveliev A, Bartsevich VV, He Z, White J, Li M, Jantz D, Wilson JM. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat Biotechnol. 2018;36:717–25. https://doi.org/10.1038/nbt.4182.

Article  CAS  PubMed  Google Scholar 

Breton C, Furmanak T, Avitto AN, Smith MK, Latshaw C, Yan H, Greig JA, Wilson JM. Increasing the specificity of AAV-based gene editing through self-targeting and short-promoter strategies. Mol Ther. 2021;29:1047–56. https://doi.org/10.1016/j.ymthe.2020.12.028.

Article  CAS  PubMed  Google Scholar 

Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA 2nd, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol. 2021;39:949–57. https://doi.org/10.1038/s41587-021-00933-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, Amaonye M, Beach A, Berth K, Biswas S, Braun MC, Chen HM, Colace TV, Ganey JD, Gangopadhyay SA, Garrity R, Kasiewicz LN, Lavoie J, Madsen JA, Matsumoto Y, Mazzola AM, Nasrullah YS, Nneji J, Ren H, Sanjeev A, Shay M, Stahley MR, Fan SHY, Tam YK, Gaudelli NM, Ciaramella G, Stolz LE, Malyala P, Cheng CJ, Rajeev KG, Rohde E, Bellinger AM, Kathiresan S. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–34. https://doi.org/10.1038/s41586-021-03534-y. (Important preclinical proof from non-humane primates for lipid lowering potential of PCSK9 gene editing).

Article  ADS  CAS  PubMed 

Comments (0)

No login
gif