Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ

Sugimoto, Y., Whitman, M., Cantley, L. C. & Erikson, R. L. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc. Natl Acad. Sci. USA 81, 2117–2121 (1984).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

Article  CAS  PubMed  Google Scholar 

Stephens, L. R., Hughes, K. T. & Irvine, R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351, 33–39 (1991).

Article  CAS  PubMed  Google Scholar 

Cash, J. N. et al. Cryo-electron microscopy structure and analysis of the P-Rex1-Gβγ signaling scaffold. Sci. Adv. 5, eaax8855 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deladeriere, A. et al. The regulatory subunits of PI3Kγ control distinct neutrophil responses. Sci. Signal 8, ra8 (2015).

Article  PubMed  Google Scholar 

Campa, C. C. et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat. Commun. 9, 5232 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, W. C., Zhou, X., Atfi, A. & Xu, K. PIK3CG is a potential therapeutic target in androgen receptor-indifferent metastatic prostate cancer. Am. J. Pathol. 190, 2194–2202 (2020).

Article  CAS  PubMed  Google Scholar 

Torres, C. et al. p110γ deficiency protects against pancreatic carcinogenesis yet predisposes to diet-induced hepatotoxicity. Proc. Natl Acad. Sci. USA 116, 14724–14733 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77, 83–93 (1994).

Article  CAS  PubMed  Google Scholar 

Rathinaswamy, M. K. et al. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci. Adv. 7, eabj4282 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephens, L. R. et al. The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89, 105–114 (1997).

Article  CAS  PubMed  Google Scholar 

Brock, C. et al. Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J. Cell Biol. 160, 89–99 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vadas, O. et al. Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc. Natl Acad. Sci. USA 110, 18862–18867 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khalil, B. D. et al. GPCR signaling mediates tumor metastasis via PI3Kβ. Cancer Res. 76, 2944–2953 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 41, 567–578 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hart, J. R. et al. Nanobodies and chemical cross-links advance the structural and functional analysis of PI3Kα. Proc. Natl Acad. Sci. USA 119, e2210769119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, J. A. et al. Design and development of a macrocyclic series targeting phosphoinositide 3-kinase δ. ACS Med. Chem. Lett. 11, 1386–1391 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesmer, J. J. Pharmacology. Hitting the hot spots of cell signaling cascades. Science 312, 377–378 (2006).

Article  CAS  PubMed  Google Scholar 

Rathinaswamy, M. K. et al. Molecular basis for differential activation of p101 and p84 complexes of PI3Kγ by Ras and GPCRs. Cell Rep. 42, 112172 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gangadhara, G. et al. A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat. Chem. Biol. 15, 348–357 (2019).

Article  CAS  PubMed  Google Scholar 

Rynkiewicz, N. K. et al. Gβγ is a direct regulator of endogenous p101/p110γ and p84/p110γ PI3Kγ complexes in mouse neutrophils. Sci. Signal 13, 656 (2020).

Article  Google Scholar 

Scott, J. K. et al. Evidence that a protein–protein interaction ‘hot spot’ on heterotrimeric G protein betagamma subunits is used for recognition of a subclass of effectors. EMBO J. 20, 767–776 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falzone, M. E. & MacKinnon, R. Gβγ activates PIP2 hydrolysis by recruiting and orienting PLCβ on the membrane surface. Proc. Natl Acad. Sci. USA 120, e2301121120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurig, B. et al. Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110gamma. Proc. Natl Acad. Sci. USA 106, 20312–20317 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krugmann, S., Cooper, M. A., Williams, D. H., Hawkins, P. T. & Stephens, L. R. Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein betagamma subunits. Biochem. J. 362, 725–731 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103, 931–943 (2000).

Article  CAS  PubMed  Google Scholar 

Miller, M. S. et al. Structural basis of nSH2 regulation and lipid binding in PI3Kα. Oncotarget 5, 5198–5208 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Maier, U., Babich, A. & Nürnberg, B. Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J. Biol. Chem. 274, 29311–29317 (1999).

Article  CAS  PubMed  Google Scholar 

Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).

Article  CAS  PubMed  Google Scholar 

Bouley, R. A. et al. A new paroxetine-based GRK2 inhibitor reduces internalization of the μ-opioid receptor. Mol. Pharmacol. 97, 392–401 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, C. L., Paul, L. N., Mermoud, J. C., Steussy, C. N. & Stauffacher, C. V. Visualizing the enzyme mechanism of mevalonate diphosphate decarboxylase. Nat. Commun. 11, 3969 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science 310, 1686–1690 (2005).

Article  CAS  PubMed  Google Scholar 

Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

Comments (0)

No login
gif