TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models

Lindenberger, U. Human cognitive aging: corriger la fortune? Science 346, 572–578 (2014).

Article  CAS  PubMed  Google Scholar 

Cunningham, C. & Hennessy, E. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimers Res. Ther. 7, 33 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Franceschi, C. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105 (2007).

Article  CAS  PubMed  Google Scholar 

Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

Article  CAS  PubMed  Google Scholar 

Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 19, 326–335 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

Article  CAS  PubMed  Google Scholar 

Cruchaga, C. et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78, 256–268 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

Article  CAS  PubMed  Google Scholar 

Melchior, B. et al. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease. ASN Neuro 2, e00037 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Leyns, C. E. G. et al. TREM2 function impedes tau seeding in neuritic plaques. Nat. Neurosci. 22, 1217–1222 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, P. et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90, 724–739 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, W. M. et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med. 215, 745–760 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

Article  CAS  PubMed  Google Scholar 

Boufenzer, A. et al. TREM-1 mediates inflammatory injury and cardiac remodeling following myocardial infarction. Circ. Res. 116, 1772–1782 (2015).

Article  CAS  PubMed  Google Scholar 

Knapp, S. et al. Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J. Immunol. 173, 7131–7134 (2004).

Article  CAS  PubMed  Google Scholar 

Liu, Q. et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat. Immunol. 20, 1023–1034 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibot, S. et al. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J. Exp. Med. 200, 1419–1426 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibot, S. et al. Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann. Intern. Med. 141, 9–15 (2004).

Article  CAS  PubMed  Google Scholar 

Chaney, A. M. et al. PET imaging of TREM1 identifies CNS-infiltrating myeloid cells in a mouse model of multiple sclerosis. Sci. Transl. Med. 15, eabm6267 (2023).

Article  CAS  PubMed  Google Scholar 

Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

Article  CAS  PubMed  Google Scholar 

Colonna, M. & Facchetti, F. TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses. J. Infect. Dis. 187, S397–S401 (2003).

Article  CAS  PubMed  Google Scholar 

Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

Article  CAS  PubMed  Google Scholar 

Netea, M. G. et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J. Leukoc. Biol. 80, 1454–1461 (2006).

Article  CAS  PubMed  Google Scholar 

Tammaro, A. et al. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol. Ther. 177, 81–95 (2017).

Article  CAS  PubMed  Google Scholar 

Replogle, J. M. et al. A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann. Neurol. 77, 469–477 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y. S. et al. Common variant in TREM1 influencing brain amyloid deposition in mild cognitive impairment and Alzheimer’s disease. Neurotox. Res. 37, 661–668 (2020).

Article  CAS  PubMed  Google Scholar 

Minhas, P. S. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122–128 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minhas, P. S. et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63 (2019).

Article  CAS  PubMed  Google Scholar 

Flowers, A., Bell-Temin, H., Jalloh, A., Stevens, S. M. & Bickford, P. C. Proteomic analysis of aged microglia: shifts intranscription, bioenergetics, and nutrient response. J. Neuroinflammation 14, 96 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

Article  CAS  PubMed  Google Scholar 

Fox, D. B. et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab. 2, 318–334 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H., Davies, K. J. A. & Forman, H. J. Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med. 88, 314–336 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, W. J. et al. Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron 110, 1932–1943.e5 (2022).

Oblak, A. L. et al. Comprehensive evaluation of the 5XFAD mouse model for preclinical testing applications: a MODEL-AD study. Front. Aging Neurosci. 13, 713726 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice co-expressing mutant presenilin 1 and amyloid precursor protein. Neuron 19, 939–945 (1997).

Article  CAS 

留言 (0)

沒有登入
gif