Monitoring Activity and Gait in Children (MAGIC) using digital health technologies

Hulleck, A. A., Mohan, D. M., Abdallah, N., Rich, M. E. & Khalaf, K. Present and future of gait assessment in clinical practice: towards the application of novel trends and technologies. Front. Méd. Technol. 4, 901331 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Wren, T. A. L., Gorton, G. E., Õunpuu, S. & Tucker, C. A. Efficacy of clinical gait analysis: a systematic review. Gait Posture 34, 149–153 (2011).

Article  PubMed  Google Scholar 

Papadopoulos, N., McGinley, J. L., Bradshaw, J. L. & Rinehart, N. J. An investigation of gait in children with Attention Deficit Hyperactivity Disorder: a case controlled study. Psychiatry Res. 218, 319–323 (2014).

Article  PubMed  Google Scholar 

Manicolo, O., Grob, A., Lemola, S. & Arx, P. H. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait. Gait Posture 44, 245–249 (2016).

Article  PubMed  Google Scholar 

Jung, H.-K., Chung, E. & Lee, B.-H. A comparison of the balance and gait function between children with Down syndrome and typically developing children. J. Phys. Ther. Sci. 29, 123–127 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wojciechowski, E. et al. Gait patterns of children and adolescents with Charcot-Marie-Tooth disease. Gait Posture 56, 89–94 (2017).

Article  PubMed  Google Scholar 

Carcreff, L. et al. Walking speed of children and adolescents with cerebral palsy: laboratory versus daily life. Front. Bioeng. Biotechnol. 8, 812 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Guinet, A.-L., Khouri, N. & Desailly, E. Clinical gait analysis and physical examination don’t correlate with physical activity of children with cerebral palsy. Cross-sectional study. Int. Biomech. 7, 88–96 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kennedy, R. A., Carroll, K., McGinley, J. L. & Paterson, K. L. Walking and weakness in children: a narrative review of gait and functional ambulation in paediatric neuromuscular disease. J. Foot Ankle Res. 13, 10 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Shrader, W., Shih, C. & McDonald, T. Instrumented Gait analysis in the care of children with cerebral palsy. J. Pediatr. Orthop. Soc. N. Am. 3, 237 (2021).

European Medicines Agency. Qualification Opinion for Stride velocity 95th centile as primary endpoint in studies in ambulatory Duchenne Muscular Dystrophy studies. https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-primary-endpoint-studies-ambulatory-duchenne_en.pdf (2023).

Reilly, J. J. et al. Physical activity to prevent obesity in young children: cluster randomised controlled trial. BMJ 333, 1041 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Nyberg, G., Norman, Å., Sundblom, E., Zeebari, Z. & Elinder, L. S. Effectiveness of a universal parental support programme to promote health behaviours and prevent overweight and obesity in 6-year-old children in disadvantaged areas, the Healthy School Start Study II, a cluster-randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 13, 4 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Janssen, I. & LeBlanc, A. G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 7, 40 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Voss, C. & Harris, K. C. Physical activity evaluation in children with congenital heart disease. Heart 103, 1408 (2017).

Article  PubMed  Google Scholar 

Álvarez-Bueno, C. et al. The effect of physical activity interventions on children’s cognition and metacognition: a systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 729–738 (2017).

Article  PubMed  Google Scholar 

Bidzan-Bluma, I. & Lipowska, M. Physical activity and cognitive functioning of children: a systematic review. Int. J. Environ. Res. Public Health 15, 800 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Korczak, D. J., Madigan, S. & Colasanto, M. Children’s physical activity and depression: a meta-analysis. Pediatrics 139, e20162266 (2017).

Article  PubMed  Google Scholar 

Marker, A. M., Steele, R. G. & Noser, A. E. Physical activity and health-related quality of life in children and adolescents: a systematic review and meta-analysis. Health Psychol. 37, 893–903 (2018).

Article  PubMed  Google Scholar 

Estévez-López, F. et al. Levels of physical activity at age 10 years and brain morphology changes from ages 10 to 14 years. JAMA Netw. Open 6, e2333157 (2023).

Article  PubMed  PubMed Central  Google Scholar 

U.S. Food and Drug Administration. Digital health technologies for remote data acquisition in clinical investigations. https://www.fda.gov/media/155022/download (2021).

Sutherland, D. The development of mature gait. Gait Posture 6, 163–170 (1997).

Article  Google Scholar 

Hausdorff, J. M., Zemany, L., Peng, C.-K. & Goldberger, A. L. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 86, 1040–1047 (1999).

Article  CAS  PubMed  Google Scholar 

Christine, A., Sophie, M., Sébastien, V., Marianne, J. & Christina, S. Development of postural control in healthy children: a functional approach. Neural Plast. 12, 109–118 (2005).

Article  Google Scholar 

Hallemans, A., Clercq, D. D., Dongen, S. V. & Aerts, P. Changes in foot-function parameters during the first 5 months after the onset of independent walking: a longitudinal follow-up study. Gait Posture 23, 142–148 (2006).

Article  PubMed  Google Scholar 

Müller, J., Müller, S., Baur, H. & Mayer, F. Intra-individual gait speed variability in healthy children aged 1–15 years. Gait Posture 38, 631–636 (2013).

Article  PubMed  Google Scholar 

Gieysztor, E., Kowal, M. & Paprocka-Borowicz, M. Gait Parameters in healthy preschool and school children assessed using wireless inertial sensor. Sensors 21, 6423 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Moreno-Hernández, A., Rodríguez-Reyes, G., Quiñones-Urióstegui, I., Núñez-Carrera, L. & Pérez-SanPablo, A. I. Temporal and spatial gait parameters analysis in non-pathological Mexican children. Gait Posture 32, 78–81 (2010).

Article  PubMed  Google Scholar 

Walton, M. K. et al. Considerations for development of an evidence dossier to support the use of mobile sensor technology for clinical outcome assessments in clinical trials. Contemp. Clin. Trials 91, 105962 (2020).

Article  CAS  PubMed  Google Scholar 

Goldsack, J. C. et al. Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). npj Digit. Med. 3, 55 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Lanovaz, J. L., Oates, A. R., Treen, T. T., Unger, J. & Musselman, K. E. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children. Gait Posture 51, 14–19 (2017).

Article  PubMed  Google Scholar 

Bourgeois, A. B., Mariani, B., Aminian, K., Zambelli, P. Y. & Newman, C. J. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture 39, 436–442 (2014).

Article  Google Scholar 

Armand, S., Decoulon, G. & Bonnefoy-Mazure, A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 1, 448–460 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Rast, F. M., Herren, S. & Labruyère, R. Acceptability of wearable inertial sensors, completeness of data, and day-to-day variability of everyday life motor activities in children and adolescents with neuromotor impairments.Front. Rehabil. Sci. 3, 923328 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Levin, H. I. et al. Sensing everyday activity: parent perceptions and feasibility. Infant Behav. Dev. 62, 101511 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Corder, K. et al. Is it possible to assess free-living physical activity and energy expenditure in young people by self-report? Am. J. Clin. Nutr. 89, 862–870 (2009).

Article  CAS  PubMed  Google Scholar 

Owen, C. G. et al. Travel to school and physical activity levels in 9–10 year-old UK children of different ethnic origin; child heart and health study in England (CHASE). PLoS One 7, e30932 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pratt, C. A. et al. Childhood Obesity Prevention and Treatment Research (COPTR): interventions addressing multiple influences in childhood and adolescent obesity. Contemp. Clin. Trials 36, 406–413 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Costa, S., Barber, S. E., Cameron, N. & Clemes, S. A. Calibration and validation of the ActiGraph GT3X+ in 2–3 year olds. J. Sci. Med. Sport 17, 617–622 (2014).

Article  PubMed  Google Scholar 

Pigeot, I., Henauw, S. & Baranowski, T. The IDEFICS (Identification and prevention of Dietary‐ and lifestyle‐induced health EFfects In Children and infantS) trial outcomes and process evaluations. Obes. Rev. 16, 2–3 (2015).

Article  PubMed  Google Scholar 

Buck, C. et al. Urban Moveability and physical activity in children: longitudinal results from the IDEFICS and I.Family cohort. Int. J. Behav. Nutr. Phys. Act. 16, 128 (2019).

留言 (0)

沒有登入
gif