Committee Opinion No. 644. The Apgar score. Obstet. Gynecol. 126, e52–e55 (2015).
Apgar, V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 32, 260–267 (1953).
Article CAS PubMed Google Scholar
Lo, S. C. Y., Bhatia, R. & Roberts, C. T. Introduction of a quality improvement bundle is associated with reduced exposure to mechanical ventilation in very preterm infants. Neonatology 118, 578–585 (2021).
Article CAS PubMed Google Scholar
SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network.Early CPAP versus surfactant in extremely preterm infants. N. Engl. J. Med. 362, 1970–1979 (2010).
Article PubMed Central Google Scholar
Fischer, H. S. & Bührer, C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics 132, e1351–e1360 (2013).
Schmolzer, G. M. et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. Bmj 347, f5980 (2013).
Article PubMed PubMed Central Google Scholar
Bahadue, F. L. & Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 11, Cd001456 (2012).
Simma, B. et al. Delivery room management of infants with very low birth weight in 3 European countries—the video Apgar study. J. Pediatrics 222, 106–111.e2 (2020).
Carbine, D. N., Finer, N. N., Knodel, E. & Rich, W. Video recording as a means of evaluating neonatal resuscitation performance. Pediatrics 106, 654–658 (2000).
Article CAS PubMed Google Scholar
Blank, D., Rich, W., Leone, T., Garey, D. & Finer, N. Pedi-cap color change precedes a significant increase in heart rate during neonatal resuscitation. Resuscitation 85, 1568–1572 (2014).
Lane, B., Finer, N. & Rich, W. Duration of intubation attempts during neonatal resuscitation. J. Pediatr. 145, 67–70 (2004).
Hegyi, T. et al. The Apgar score and its components in the preterm infant. Pediatrics 101, 77–81 (1998).
Article CAS PubMed Google Scholar
O’Donnell, C. P. F., Kamlin, C. O. F., Davis, P. G., Carlin, J. B. & Morley, C. J. Interobserver variability of the 5-minute Apgar score. J. Pediatr. 149, 486–489 (2006).
Leone, T. A. Using video to assess and improve patient safety during simulated and actual neonatal resuscitation. Semin. Perinatol. 43, 151179 (2019).
Gaertner, V. D., Flemmer, S. A., Lorenz, L., Davis, P. G. & Kamlin, C. O. F. Physical stimulation of newborn infants in the delivery room. Arch. Dis. Child Fetal Neonatal Ed. 103, F132–F136 (2018).
Hodgson, K. A., Owen, L. S. & Manley, B. J. Nasal high-flow therapy during neonatal endotracheal intubation. N. Engl. J. Med. 386, 1627–1637 (2022).
ANZCOR. Tracheal Intubation and Ventilation of the Newborn (2021).
Safercare Victoria. Intubation, https://www.safercare.vic.gov.au/clinical-guidance/neonatal/intubation (2019).
ANZCOR, Newborn Life Support Flowchart (2016).
Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med 18, 91–93 (2018).
Article PubMed PubMed Central Google Scholar
Blundell, P. D. M. & Chakraborty, M. Relationship between Apgar scores and morbidity and mortality outcomes in preterm infants: a single-centre cohort study. Neonatology 117, 742–749 (2021).
Killion, M. M. Correct use of the Apgar score. MCN Am. J. Matern Child Nurs. 41, 123 (2016).
Medlock, S., Ravelli, A. C. J., Tamminga, P., Mol, B. W. M. & Abu-Hanna, A. Prediction of mortality in very premature infants: a systematic review of prediction models. PLoS One 6, e23441 (2011).
Article CAS PubMed PubMed Central Google Scholar
Catlin, E. A. et al. The Apgar score revisited: influence of gestational age. J. Pediatr. 109, 865–868 (1986).
Article CAS PubMed Google Scholar
Goldenberg, R. L., Huddleston, J. F. & Nelson, K. G. Apgar scores and umbilical arterial ph in preterm newborn infants. Am. J. Obstet. Gynecol. 149, 651–654 (1984).
Article CAS PubMed Google Scholar
Katheria, A. et al. Neonatal resuscitation with an intact cord: a randomized clinical trial. J. Pediatr. 178, 75–80.e3 (2016).
Article PubMed PubMed Central Google Scholar
Dekker, J. et al. Tactile stimulation to stimulate spontaneous breathing during stabilization of preterm infants at birth: a retrospective analysis. Front. Pediatr. 5, 61 (2017).
Article PubMed PubMed Central Google Scholar
Kc, A. et al. Impact of stimulation among non-crying neonates with intact cord versus clamped cord on birth outcomes: observation study. BMJ Paediatr. Open 5, e001207 (2021).
Article PubMed PubMed Central Google Scholar
Katheria, A., Rich, W. & Finer, N. Electrocardiogram provides a continuous heart rate faster than oximetry during neonatal resuscitation. Pediatrics 130, e1177–e1181 (2012).
Badurdeen, S. et al. Physiologically based cord clamping for infants ≥32+0 weeks gestation: a randomised clinical trial and reference percentiles for heart rate and oxygen saturation for infants ≥35+0 weeks gestation. PLoS Med. 19, e1004029 (2022).
Article CAS PubMed PubMed Central Google Scholar
Money, N. et al. Who’s counting? Assessing the effects of a simulation-based training intervention on the accuracy of neonatal heart rate auscultation. J. Perinatol. 39, 634–639 (2019).
Chitkara, R. et al. The accuracy of human senses in the detection of neonatal heart rate during standardized simulated resuscitation: implications for delivery of care, training and technology design. Resuscitation 84, 369–372 (2013).
Boon, W. et al. Evaluation of heart rate assessment timing, communication, accuracy, and clinical decision-making during high fidelity simulation of neonatal resuscitation. Int J. Pediatr. 2014, 927430 (2014).
Article PubMed PubMed Central Google Scholar
Kamlin, C. O. F., O’Donnell, C. P. F., Everest, N. J., Davis, P. G. & Morley, C. J. Accuracy of clinical assessment of infant heart rate in the delivery room. Resuscitation 71, 319–321 (2006).
Johnson, P. A. & Schmölzer, G. M. Heart rate assessment during neonatal resuscitation. Healthcare 8, 43 (2020).
Article PubMed PubMed Central Google Scholar
Dawson, J. A. et al. Oxygen saturation and heart rate during delivery room resuscitation of infants <30 weeks’ gestation with air or 100% oxygen. Arch. Dis. Child Fetal Neonatal Ed. 94, 87–91 (2009).
Crowther, C. A. et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: an individual participant data meta-analysis. PLoS Med. 14, e1002398 (2017).
Comments (0)