Relationship Between Reactive Astrocytes, by [18F]SMBT-1 Imaging, with Amyloid-Beta, Tau, Glucose Metabolism, and TSPO in Mouse Models of Alzheimer’s Disease

Adlimoghaddam A, Snow WM, Stortz G, Perez C, Djordjevic J, Goertzen AL, Ko JH, Albensi BC (2019) Regional hypometabolism in the 3xTg mouse model of Alzheimer’s disease. Neurobiol Dis 127:264–277

Article  CAS  PubMed  Google Scholar 

Andersen JV, Skotte NH, Christensen SK, Polli FS, Shabani M, Markussen KH, Haukedal H, Westi EW et al (2021) Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death Dis 12(11):954

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballweg A, Klaus C, Vogler L, Katzdobler S, Wind K, Zatcepin A, Ziegler SI, Secgin B et al (2023) [(18)F]F-DED PET imaging of reactive astrogliosis in neurodegenerative diseases: preclinical proof of concept and first-in-human data. J Neuroinflammation 20(1):68

Article  PubMed  PubMed Central  Google Scholar 

Barron AM, Ji B, Fujinaga M, Zhang MR, Suhara T, Sahara N, Aoki I, Tsukada H et al (2020) In vivo positron emission tomography imaging of mitochondrial abnormalities in a mouse model of tauopathy. Neurobiol Aging 94:140–148

Article  CAS  PubMed  Google Scholar 

Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, Ashton NJ et al (2023) Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease. Nat Med 29(7):1775–1781

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beyer L, Stocker H, Rujescu D, Holleczek B, Stockmann J, Nabers A, Brenner H, Gerwert K (2023) Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer’s disease diagnosis within 17 years. Alzheimers Dement 19:1020–1028

Article  CAS  Google Scholar 

Biechele G, Sebastian Monasor L, Wind K, Blume T, Parhizkar S, Arzberger T, Sacher C, Beyer L et al (2022) Glitter in the darkness? Non-fibrillar β-amyloid plaque components significantly impact the β-amyloid PET signal in mouse models of Alzheimer’s Disease. J Nucl Med 63(1):117–124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, Beck R, Lindner S et al (2016) Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med 57(6):954–960

Article  CAS  PubMed  Google Scholar 

Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R (2021) Positron emission tomography in animal models of tauopathies. Front Aging Neurosci 13:761913

Article  CAS  PubMed  Google Scholar 

Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46

Article  CAS  PubMed  Google Scholar 

Chaney A, Bauer M, Bochicchio D, Smigova A, Kassiou M, Davies KE, Williams SR, Boutin H (2018) Longitudinal investigation of neuroinflammation and metabolite profiles in the APP(swe) ×PS1(Δe9) transgenic mouse model of Alzheimer’s disease. J Neurochem 144(3):318–335

Article  CAS  PubMed  Google Scholar 

Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, Vandesquille M, Harte MK et al (2021) Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Theranostics 11(14):6644–6667

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P et al (2021) Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry 11(1):27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M et al (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50(3):468–476

Article  CAS  PubMed  Google Scholar 

Chen YA, Lu CH, Ke CC, Chiu SJ, Chang CW, Yang BH, Gelovani JG, Liu RS (2021) Evaluation of class IIa histone deacetylases expression and in vivo epigenetic imaging in a transgenic mouse model of Alzheimer’s disease. Int J Mol Sci 22(16):8633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, Abrunhosa A, Rodrigues-Neves AC et al (2019) A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet 28(13):2174–2188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun H, Im H, Kang YJ, Kim Y, Shin JH, Won W, Lim J, Ju Y et al (2020) Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H(2)O(2)(-) production. Nat Neurosci 23(12):1555–1566

Article  CAS  PubMed  Google Scholar 

Dai C-l, Hu W, Tung YC, Liu F, Gong C-X, Iqbal K (2018) Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice. Alzheimer’s Res Ther 10(1):13

Article  Google Scholar 

De Bastiani MA, Bellaver B, Brum WS, Souza DG, Ferreira PCL, Rocha AS, Povala G, Ferrari-Souza JP et al (2023) Hippocampal GFAP-positive astrocyte responses to amyloid and tau pathologies. Brain Behav Immun 110:175–184

Article  PubMed  Google Scholar 

Deleye S, Waldron AM, Verhaeghe J, Bottelbergs A, Wyffels L, Van Broeck B, Langlois X, Schmidt M et al (2017) Evaluation of small-animal PET outcome measures to detect disease modification induced by BACE inhibition in a transgenic mouse model of Alzheimer disease. J Nucl Med 58(12):1977–1983

Article  CAS  PubMed  Google Scholar 

Drake LR, Brooks AF, Mufarreh AJ, Pham JM, Koeppe RA, Shao X, Scott PJH, Kilbourn MR (2018) Deuterium Kinetic Isotope Effect Studies of a Potential in Vivo Metabolic Trapping Agent for Monoamine Oxidase B. ACS Chem Neurosci 9(12):3024–3027

Article  CAS  PubMed  Google Scholar 

Endepols H, Anglada-Huguet M, Mandelkow E, Schmidt Y, Krapf P, Zlatopolskiy BD, Neumaier B, Mandelkow E-M et al (2022) Assessment of the in vivo relationship between cerebral hypometabolism, tau deposition, TSPO Expression, and synaptic density in a tauopathy mouse model: a multi-tracer PET study. Mol Neurobiol 59(6):3402–3413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24(3):312–325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrari-Souza JP, Ferreira PCL, Bellaver B, Tissot C, Wang YT, Leffa DT, Brum WS, Benedet AL et al (2022) Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer’s disease. Mol Psychiatry 27(11):4781–4789

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filip T, Mairinger S, Neddens J, Sauberer M, Flunkert S, Stanek J, Wanek T, Okamura N et al (2021) Characterization of an APP/tau rat model of Alzheimer’s disease by positron emission tomography and immunofluorescent labeling. Alzheimer’s Res Ther 13(1):175

Article  CAS  Google Scholar 

Fontana IC, Kumar A, Okamura N, Nordberg A (2024) Multitracer approach to understanding the complexity of reactive astrogliosis in Alzheimer’s brains. ACS Chem Neurosci 15(2):328–336

Article  CAS  PubMed  Google Scholar 

Frost GR, Longo V, Li T, Jonas LA, Judenhofer M, Cherry S, Koutcher J, Lekaye C et al (2020) Hybrid PET/MRI enables high-spatial resolution, quantitative imaging of amyloid plaques in an Alzheimer’s disease mouse model. Sci Rep 10(1):10379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galea E, Morrison W, Hudry E, Arbel-Ornath M, Bacskai BJ, Gómez-Isla T, Stanley HE, Hyman BT (2015) Topological analyses in APP/PS1 mice reveal that astrocytes do not migrate to amyloid-β plaques. Proc Natl Acad Sci U S A 112(51):15556–15561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC et al (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68

Article  PubMed  Google Scholar 

Hamelin L, Lagarde J, Dorothée G, Potier MC, Corlier F, Kuhnast B, Caillé F, Dubois B et al (2018) Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 141(6):1855–1870

Article  PubMed  Google Scholar 

Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, Iwata R, Shidahara M et al (2021) (18)F-SMBT-1: a selective and reversible PET tracer for monoamine oxidase-B imaging. J Nucl Med 62(2):253–258

Article  CAS  PubMed  Google Scholar 

Hu W, Pan D, Wang Y, Bao W, Zuo C, Guan Y, Hua F, Yang M et al (2020) PET imaging for dynamically monitoring neuroinflammation in APP/PS1 mouse model using [(18)F]DPA714. Front Neurosci 14:810

Article  PubMed  PubMed Central  Google Scholar 

Ishikawa A, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takuwa H, Ono M, Ni R et al (2018) In vivo visualization of tau accumulation, microglial activation, and brain atrophy in a mouse model of tauopathy rTg4510. J Alzheimers Dis 61(3):1037–1052

留言 (0)

沒有登入
gif