LPAR6 Participates in Neuropathic Pain by Mediating Astrocyte Cells via ROCK2/NF-κB Signal Pathway

Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice ASC, Treede RD (2011) A new definition of neuropathic pain. Pain 152(10):2204–2205. https://doi.org/10.1016/j.pain.2011.06.017

Article  PubMed  Google Scholar 

van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662. https://doi.org/10.1016/j.pain.2013.11.013

Article  PubMed  Google Scholar 

Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642. https://doi.org/10.1016/S1474-4422(12)70134-5

Article  CAS  PubMed  Google Scholar 

Zhang Z, Ma Z, Zou W, Zhang L, Li Y, Zhang J, Liu M, Hou W, Ma Y (2019) N-myc downstream-regulated gene 2 controls astrocyte morphology via Rho-GTPase signaling. J Cell Physiol 234(11):20847–20858. https://doi.org/10.1002/jcp.28689

Article  CAS  PubMed  Google Scholar 

Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S (2017) Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 23(7):818–828. https://doi.org/10.1038/nm.4354

Article  CAS  PubMed  Google Scholar 

Wang J, Hou Y, Zhang L, Liu M, Zhao J, Zhang Z, Ma Y, Hou W (2020) Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol Neurobio 58(3):1052–1061. https://doi.org/10.1007/s12035-020-02171-2

Article  CAS  Google Scholar 

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ueda H, Neyama H, Nagai J, Matsushita Y, Tsukahara T, Tsukahara R (2018) Involvement of lysophosphatidic acid-induced astrocyte activation underlying the maintenance of partial sciatic nerve injury-induced neuropathic pain. Pain 159(11):2170–2178. https://doi.org/10.1097/j.pain.0000000000001316

Article  CAS  PubMed  Google Scholar 

Kihara Y, Mizuno H, Chun J (2015) Lysophospholipid receptors in drug discovery. Exp Cell Res 333(2):171–177. https://doi.org/10.1016/j.yexcr.2014.11.020

Article  CAS  PubMed  Google Scholar 

Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10(7):712–718. https://doi.org/10.1038/nm1060

Article  CAS  PubMed  Google Scholar 

Kim D, Khin PP, Lim OK, Jun HS (2022) LPA/LPAR1 signaling induces PGAM1 expression via AKT/mTOR/HIF-1α pathway and increases aerobic glycolysis, contributing to keratinocyte proliferation. Life Sci 311(Pt B):121201. https://doi.org/10.1016/j.lfs.2022.121201

Article  CAS  PubMed  Google Scholar 

Ren G, Guo JH, Feng CL, Ding YW, Dong B, Han YX, Li YH, Wang LL, Jiang JD (2022) Berberine inhibits carcinogenesis through antagonizing the ATX-LPA-LPAR2-p38-leptin axis in a mouse hepatoma model. Mol Ther Oncolytics 26:372–386. https://doi.org/10.1016/j.omto.2022.08.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kowalczyk-Zieba I, Woclawek-Potocka I, Wasniewski T, Boruszewska D, Grycmacher K, Sinderewicz E, Staszkiewicz J, Wolczynski S (2019) LPAR2 and LPAR4 are the main receptors responsible for LPA actions in ovarian endometriotic cysts. Reprod Sci 26(1):139–150. https://doi.org/10.1177/1933719118766263

Article  CAS  PubMed  Google Scholar 

Sumitomo A, Siriwach R, Thumkeo D, Ito K, Nakagawa R, Tanaka N, Tanabe K, Watanabe A, Kishibe M, Ishida-Yamamoto A, Honda T, Kabashima K, Aoki J, Narumiya S (2019) LPA induces keratinocyte differentiation and promotes skin barrier function through the LPAR1/LPAR5-RHO-ROCK-SRF Axis. J Invest Dermatol 139(5):1010–1022. https://doi.org/10.1016/j.jid.2018.10.034

Article  CAS  PubMed  Google Scholar 

Takahashi K, Fukushima K, Onishi Y, Inui K, Node Y, Fukushima N, Honoki K, Tsujiuchi T (2017) Lysophosphatidic acid (LPA) signaling via LPA(4) and LPA(6) negatively regulates cell motile activities of colon cancer cells. Biochem Biophys Res Commun 483(1):652–657. https://doi.org/10.1016/j.bbrc.2016.12.088

Article  CAS  PubMed  Google Scholar 

Plastira I, Bernhart E, Joshi L, Koyani CN, Strohmaier H, Reicher H, Malle E, Sattler W (2020) MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. J Neuroinflammation 17(1):127. https://doi.org/10.1186/s12974-020-01809-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Velasco M, O'Sullivan C, Sheridan GK (2017) Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 113(Pt B):608–617. https://doi.org/10.1016/j.neuropharm.2016.04.002

Article  CAS  PubMed  Google Scholar 

Plastira I, Bernhart E, Goeritzer M, DeVaney T, Reicher H, Hammer A, Lohberger B, Wintersperger A, Zucol B, Graier WF, Kratky D, Malle E, Sattler W (2017) Lysophosphatidic acid via LPA-receptor 5/protein kinase D-dependent pathways induces a motile and pro-inflammatory microglial phenotype. J Neuroinflammation 14(1):253. https://doi.org/10.1186/s12974-017-1024-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer SA, Suarez-Pozos E, Soto-Verdugo J, Wang H, Afshari FS, Li G, Manam S, Yasuda D, Ortega A, Lister JA, Ishii S, Zhang Y, Fuss B (2022) Lysophosphatidic acid signaling via LPA(6) : A negative modulator of developmental oligodendrocyte maturation. J Neurochem 163(6):478–499. https://doi.org/10.1111/jnc.15696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masago K, Kihara Y, Yanagida K, Hamano F, Nakagawa S, Niwa M, Shimizu T (2018) Lysophosphatidic acid receptor, LPA(6), regulates endothelial blood-brain barrier function: Implication for hepatic encephalopathy. Biochem Biophys Res Commun 501(4):1048–1054. https://doi.org/10.1016/j.bbrc.2018.05.106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Q, Ford NC, He S, Huang Q, Anderson M, Chen Z, Yang F, Crawford LK, Caterina MJ, Guan Y, Dong X (2021) Astrocytes contribute to pain gating in the spinal cord. Sci Adv 7(45):eabi6287. https://doi.org/10.1126/sciadv.abi6287

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110. https://doi.org/10.1016/0304-3959(83)90201-4

Article  PubMed  Google Scholar 

Hou B, Zhang Y, Liang P, He Y, Peng B, Liu W, Han S, Yin J, He X (2020) Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death & Dis 11(5). https://doi.org/10.1038/s41419-020-2565-2

Ben Haim L, Rowitch DH (2017) Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18(1):31–41. https://doi.org/10.1038/nrn.2016.159

Article  CAS  PubMed  Google Scholar 

Zheng J, Lu J, Mei S, Wu H, Sun Z, Fang Y, Xu S, Wang X, Shi L, Xu W, Chen S, Yu J, Liang F, Zhang J (2021) Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J Neuroinflammation 18(1):43. https://doi.org/10.1186/s12974-021-02101-633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1 (0 1)):S10–s28. https://doi.org/10.1016/j.pain.2013.06.022

Article  PubMed  PubMed Central  Google Scholar 

Miller SJ (2018) Astrocyte heterogeneity in the adult central nervous system. Front Cell Neurosci 12:401. https://doi.org/10.3389/fncel.2018.00401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H (2015) NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 85(1):101–115. https://doi.org/10.1016/j.neuron.2014.11.018

Article  CAS  PubMed  Google Scholar 

Peng J, Gu N, Zhou L, Be U, Murugan M, Gan WB, Wu LJ (2016) Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun 7:12029. https://doi.org/10.1038/ncomms1202942

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Masamune A, Kikuta K, Satoh M, Satoh K, Shimosegawa T (2003) Rho kinase inhibitors block activation of pancreatic stellate cells. Br J Pharmacol 140(7):1292–1302. https://doi.org/10.1038/sj.bjp.0705551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Lin Q, Hou Q, Yin C, Zhang L, Li Y (2019) Alkannin attenuates lipopolysaccharide-induced lung injury in mice via Rho/ROCK/NF-κB pathway. J Biochem Mol Toxicol 33(7):e22323. https://doi.org/10.1002/jbt.22323

留言 (0)

沒有登入
gif