AQP4 Endocytosis-Lysosome Degradation Mediated by MMP-9/β-DG Involved in Diabetes Cognitive Impairment

Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74

Article  PubMed  Google Scholar 

Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K (2021) Alzheimer’s disease and type 2 diabetes mellitus: a systematic review of proteomic studies. J Neurochem 156(6):753–776. https://doi.org/10.1111/jnc.15166

Article  CAS  PubMed  Google Scholar 

Puig KL, Floden AM, Adhikari R, Golovko MY, Combs CK (2012) Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PloS One 7(1):e30378. https://doi.org/10.1371/journal.pone.0030378

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Liu L, Lu S, Wang D, Liu X, Xie L, Wang G (2011) Impaired amyloid β-degrading enzymes in brain of streptozotocin-induced diabetic rats. J Endocrinol Invest 34(1):26–31

Article  CAS  PubMed  Google Scholar 

Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A et al (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143(8):2576–2593. https://doi.org/10.1093/brain/awaa179

Article  PubMed  PubMed Central  Google Scholar 

Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17(1):171–180

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95(20):11981–11986

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL et al (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74(1):91–99. https://doi.org/10.1001/jamaneurol.2016.4370

Article  PubMed  Google Scholar 

Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I et al (2020) Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends In Mol Med 26(3):285–295. https://doi.org/10.1016/j.molmed.2019.11.008

Article  CAS  Google Scholar 

Si X, Dai S, Fang Y, Tang J, Wang Z, Li Y, Song Z, Chen Y, et al (2024) Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson’s disease. J Ad Res 15(56):125–136.https://doi.org/10.1016/j.jare.2023.03.004

Zhao F, Deng J, Xu X, Cao F, Lu K, Li D, Cheng X, Wang X et al (2018) Aquaporin-4 deletion ameliorates hypoglycemia-induced BBB permeability by inhibiting inflammatory responses. J Neuroinflammation. 15(1):157. https://doi.org/10.1186/s12974-018-1203-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4):1543–1562. https://doi.org/10.1152/physrev.00011.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hubbard JA, Szu JI, Binder DK (2018) The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 136:118–129. https://doi.org/10.1016/j.brainresbull.2017.02.011

Article  CAS  PubMed  Google Scholar 

Liu Y, Hu P-P, Zhai S, Feng W-X, Zhang R, Li Q, Marshall C, Xiao M et al (2022) Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer’s disease. Neural Regen Res 17(9):2079–2088. https://doi.org/10.4103/1673-5374.335169

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Lu Y, Kong H, Li L, Marshall C, Xiao M, Ding J, Gao J et al (2012) Aquaporin-4 deficiency exacerbates brain oxidative damage and memory deficits induced by long-term ovarian hormone deprivation and D-galactose injection. Int J Neuropsychopharmacol 15(1):55–68. https://doi.org/10.1017/S1461145711000022

Article  CAS  PubMed  Google Scholar 

Li Y-K, Wang F, Wang W, Luo Y, Wu P-F, Xiao J-L, Hu Z-L, Jin Y et al (2012) Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology 37(8):1867–1878. https://doi.org/10.1038/npp.2012.34

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pei L, Yang G, Jiang J, Jiang R, Deng Q, Chen B, Gan X (2013) Expression of aquaporins in prostate and seminal vesicles of diabetic rats. J Sexual Med 10(12):2975–2985. https://doi.org/10.1111/jsm.12276

Article  CAS  Google Scholar 

Wang T, Zhang C, Xie H, Jiang M, Tian H, Lu L, Xu G-T, Liu L et al (2021) Anti-VEGF therapy prevents Müller intracellular edema by decreasing VEGF-A in diabetic retinopathy. Eye Vision (London, England) 8(1):13. https://doi.org/10.1186/s40662-021-00237-3

Article  CAS  PubMed  Google Scholar 

Zanotto C, Simão F, Gasparin MS, Biasibetti R, Tortorelli LS, Nardin P, Gonçalves C-A (2017) Exendin-4 reverses biochemical and functional alterations in the blood-brain and blood-CSF barriers in diabetic rats. Mol Neurobiol 54(3):2154–2166. https://doi.org/10.1007/s12035-016-9798-1

Article  CAS  PubMed  Google Scholar 

Del Puerto A, Pose-Utrilla J, Simón-García A, López-Menéndez C, Jiménez AJ, Porlan E, Pajuelo LSM, Cano-García G et al (2021) Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Mol Psychiatry 26(11):6411–6426. https://doi.org/10.1038/s41380-021-01127-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madrid R, Le Maout S, Barrault MB, Janvier K, Benichou S, Mérot J (2001) Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin-adaptor complexes. EMBO J 20(24):7008–7021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinson SR, Clift IC, Luo N, Kryzer TJ, Lennon VA (2017) Autoantibody-induced internalization of CNS AQP4 water channel and EAAT2 glutamate transporter requires astrocytic Fc receptor. Proc National Acad Sci United States Am 114(21):5491–5496. https://doi.org/10.1073/pnas.1701960114

Article  CAS  Google Scholar 

Ratelade J, Bennett JL, Verkman AS (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J Biol Chem 286(52):45156–45164. https://doi.org/10.1074/jbc.M111.297275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S et al (2020) Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181:4. https://doi.org/10.1016/j.cell.2020.03.037

Article  CAS  Google Scholar 

Waite A, Brown SC, Blake DJ (2012) The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci 35(8):487–496. https://doi.org/10.1016/j.tins.2012.04.004

Article  CAS  PubMed  Google Scholar 

Tham DKL, Joshi B, Moukhles H (2016) Aquaporin-4 cell-surface expression and turnover are regulated by dystroglycan, dynamin, and the extracellular matrix in astrocytes. PloS One 11(10):e0165439. https://doi.org/10.1371/journal.pone.0165439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K-I, Rikitake Y (2018) Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: roles of dystroglycan and α-syntrophin in aquaporin-4 expression. J Neurochem 147(4):495–513. https://doi.org/10.1111/jnc.14548

Article  CAS  PubMed  Google Scholar 

Noell S, Wolburg-Buchholz K, Mack AF, Beedle AM, Satz JS, Campbell KP, Wolburg H, Fallier-Becker P (2011) Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci 33(12):2179–2186. https://doi.org/10.1111/j.1460-9568.2011.07688.x

Article  PubMed  PubMed Central  Google Scholar 

Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R (2010) Matrix metalloproteinases. Curr Med Chem 17(31):3751–3768

Article  CAS  PubMed  Google Scholar 

Rohani MG, Parks WC (2015) Matrix remodeling by MMPs during wound repair. Matrix Biology : Journal of the International Society For Matrix Biology 36(44–46):113–121. https://doi.org/10.1016/j.matbio.2015.03.002

Vafadari B, Salamian A, Kaczmarek L (2016) MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 139(Suppl):2. https://doi.org/10.1111/jnc.13415

Article  CAS  Google Scholar 

Stawarski M, Stefaniuk M, Wlodarczyk J (2014) Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines. Front Neuroanat 8:68. https://doi.org/10.3389/fnana.2014.00068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozzi M, Sciandra F, Brancaccio A (2015) Role of gelatinases in pathological and physiological processes involving the dystrophin-glycoprotein complex. Matrix Biol 36(44–46):130–137. https://doi.org/10.1016/j.matbio.2015.02.005

Article  CAS 

留言 (0)

沒有登入
gif