Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation

Albany C et al (2021) Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724). Support Care Cancer 29(2):833–840

Article  PubMed  Google Scholar 

Alotaibi M et al (2022) Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front Aging Neurosci 14:891593

Article  CAS  PubMed  PubMed Central  Google Scholar 

An Q et al (2021) Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 18(1):117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Argyriou AA et al (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 82(1):51–77

Article  PubMed  Google Scholar 

Banach M, Juranek JK, Zygulska AL (2017) Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav 7(1):e00558

Article  PubMed  Google Scholar 

Benschop RJ et al (2014) Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthr Cartil 22(4):578–585

Article  CAS  Google Scholar 

Boulikas T, Vougiouka M (2003) Cisplatin and platinum drugs at the molecular level (review). Oncol Rep 10(6):1663–1682

CAS  PubMed  Google Scholar 

Canta A, Pozzi E, Carozzi VA (2015) Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 3(2):198–223

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao A et al (2023) Effect of exercise on chemotherapy-induced peripheral neuropathy among patients treated for ovarian cancer: a secondary analysis of a randomized clinical trial. JAMA Netw Open 6(8):e2326463

Article  PubMed  PubMed Central  Google Scholar 

Cavaletti G, Marmiroli P (2015) Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol 28(5):500–507

Article  CAS  PubMed  Google Scholar 

Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

Article  CAS  PubMed  Google Scholar 

Colvin LA (2019) Chemotherapy-induced peripheral neuropathy: where are we now? Pain 160(Suppl 1):S1–S10

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

De Logu F et al (2022) Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 13(1):646

Article  PubMed  PubMed Central  ADS  Google Scholar 

Domingo IK, Latif A, Bhavsar AP (2022) Pro-inflammatory signalling PRRopels cisplatin-induced toxicity. Int J Mol Sci 23(13)

Flatters SJL, Dougherty PM, Colvin LA (2017) Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): a narrative review. Br J Anaesth 119(4):737–749

Article  CAS  PubMed  Google Scholar 

Fumagalli G et al (2020) Neuroinflammatory process involved in different preclinical models of chemotherapy-induced peripheral neuropathy. Front Immunol 11:626687

Article  CAS  PubMed  Google Scholar 

Gregg RW et al (1992) Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10(5):795–803

Article  CAS  PubMed  Google Scholar 

Hansen RR et al (2016) Role of extracellular calcitonin gene-related peptide in spinal cord mechanisms of cancer-induced bone pain. Pain 157(3):666–676

Article  CAS  PubMed  Google Scholar 

Huang X et al (2021) Downregulation of metallothionein-2 contributes to oxaliplatin-induced neuropathic pain. J Neuroinflammation 18(1):91

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyengar S, Ossipov MH, Johnson KW (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158(4):543–559

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janes K et al (2015) Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 44:91–99

Article  CAS  PubMed  Google Scholar 

Jordan B et al (2020) Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann Oncol 31(10):1306–1319

Article  CAS  PubMed  Google Scholar 

Kerckhove N et al (2017) Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol 8:86

Article  PubMed  PubMed Central  Google Scholar 

Krukowski K et al (2017) HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain 158(6):1126–1137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Labastida-Ramírez A et al (2023) Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 24(1):125

Article  PubMed  PubMed Central  Google Scholar 

Leo M et al (2021a) Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp Neurol 341:113695

Article  CAS  PubMed  Google Scholar 

Leo M et al (2021b) Modulation of glutamate transporter EAAT1 and inward-rectifier potassium channel K(ir4.1) expression in cultured spinal cord astrocytes by platinum-based chemotherapeutics. Int J Mol Sci 22(12)

Li Y et al (2015) MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun 49:255–266

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Li Y et al (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38(5):1124–1136

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Ma X et al (2022) Spinal neuronal GRK2 contributes to preventive effect by electroacupuncture on cisplatin-induced peripheral neuropathy in mice. Anesth Analg 134(1):204–215

Article  MathSciNet  CAS  PubMed  Google Scholar 

Makker PG et al (2017) Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS ONE 12(1):e0170814

Article  PubMed  PubMed Central  Google Scholar 

McDonald ES et al (2005) Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol Dis 18(2):305–313

Article  CAS  PubMed  Google Scholar 

Mei C et al (2023) Trimethoxyflavanone relieves paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 236:109584

Article  CAS  PubMed  Google Scholar 

Navia-Pelaez JM et al (2021) Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. J Exp Med 218(7)

Park JH et al (2015) Oxaliplatin-induced peripheral neuropathy via TRPA1 stimulation in mice dorsal root ganglion is correlated with aluminum accumulation. PLoS ONE 10(4):e0124875

Article  PubMed  PubMed Central  Google Scholar 

Robinson CR, Zhang H, Dougherty PM (2014) Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274:308–317

Article  CAS  PubMed  Google Scholar 

Russo AF (2015) Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol 55:533–552

Article  CAS  PubMed  Google Scholar 

Schmitt LI et al (2020) Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro. Mol Cell Neurosci 105:103499

Article  CAS  PubMed 

留言 (0)

沒有登入
gif