Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia

Adedara IA, Abolaji AO, Rocha JBT, Farombi EO (2016) Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity. Neurochem Res 41:1430–1438. https://doi.org/10.1007/s11064-016-1852-x

Article  CAS  PubMed  Google Scholar 

Adedara IA, Owoeye O, Awogbindin IO, Ajayi BO, Rocha JBT, Farombi EO (2018) Diphenyl diselenide abrogates brain oxidative injury and neurobehavioural de fi cits associated with pesticide chlorpyrifos exposure in rats. Chem Biol Interact 296:105–116. https://doi.org/10.1016/j.cbi.2018.09.016

Article  CAS  PubMed  Google Scholar 

Ando K, Ishii T, Fukuhara S (2021) Zebrafish Vascular Mural Cell Biology : Recent Advances , Development , and Functions. life. https://doi.org/10.3390/life11101041

Baillieul S, Dekkers M, Brill A, Schmidt MH, Detante O, Pépin J, Tamisier R, Bassetti C (2022) Sleep apnoea and ischaemic stroke : current knowledge and future directions. Lancet Neurol 21. https://doi.org/10.1016/S1474-4422(21)00321-5

Baldissera MD, Souza CF, da Silva AS, Henn AS, Flores EMM, Baldisserotto B (2020) Diphenyl diselenide dietary supplementation alleviates behavior impairment and brain damage in grass carp (Ctenopharyngodon idella) exposed to methylmercury chloride. Comp Biochem Physiol Part - C Toxicol Pharmacol 229:108674. https://doi.org/10.1016/j.cbpc.2019.108674

Article  CAS  Google Scholar 

Baltan S, Morrison RS, Murphy SP (2013) Novel Protective Effects of Histone Deacetylase Inhibition on Stroke and White Matter Ischemic Injury. Neurotherapeutics 798–807. https://doi.org/10.1007/s13311-013-0201-x

Bantounou M, Plascevic J, Galley HF (2022) Melatonin and Related Compounds: Antioxidant and Anti-Inflammatory Actions. antioxidants. https://doi.org/10.3390/antiox11030532

Braga MM, Rico EP, Córdova SD, Pinto CB, Blaser RE, Dias RD, Rosemberg DB, Oliveira DL, Souza DO (2013) Evaluation of spontaneous recovery of behavioral and brain injury profiles in zebrafish after hypoxia. Behav Brain Res 253:145–151

Article  CAS  PubMed  Google Scholar 

Braga MM, Silva ES, Moraes TB, Schirmbeck GH, Rico EP, Pinto CB, Rosemberg DB, Dutra-Filho CS, Dias RD, Oliveira DL, Rocha JBT, Souza DO (2016) Brain zinc chelation by diethyldithiocarbamate increased the behavioral and mitochondrial damages in zebrafish subjected to hypoxia. Sci Rep 6:20279

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Brüning CA, Prigol M, Luchese C, Jesse CR, Duarte MM, Roman SS, Nogueira CW (2012) Protective effect of diphenyl diselenide on ischemia and reperfusion-induced cerebral injury: involvement of oxidative stress and pro-inflammatory cytokines. Neurochem Res 37(10):2249–2258

Article  PubMed  Google Scholar 

Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J (2018) Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 52:1158–1169. https://doi.org/10.1080/10715762.2018.1536824

Article  CAS  PubMed  Google Scholar 

Burger M, Fachinetto R, Calegari L, Paixão MW, Braga AL, Rocha JB (2004) Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide. Brain Res Bull 64(4):339–345

Article  CAS  PubMed  Google Scholar 

Cabral-Costa J, Kowaltowski AJ (2020) Neurological disorders and mitochondria. Mol Aspects Med 71:100826. https://doi.org/10.1016/j.mam.2019.10.003

Article  CAS  PubMed  Google Scholar 

Cesar P, Araujo O, Henrique M, Sari M, Silva N, Ten J, Jung K, Augusto C (2020) Effect of m -trifluoromethyl-diphenyl diselenide on acute and subchronic animal models of in fl ammatory pain : Behavioral , biochemical and molecular insights. Chem Biol Interact 317. https://doi.org/10.1016/j.cbi.2020.108941

Chang J, Lien C-F, Lee W-S, Yang K-T (2019) Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca2+ Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells 8. https://doi.org/10.3390/cells8060564

Choudhry H, Harris AL (2018) Advances in Hypoxia-Inducible Factor Biology. Cell Metab 27:281–298. https://doi.org/10.1016/j.cmet.2017.10.005

Article  CAS  PubMed  Google Scholar 

Clark DD, Sokoloff L (1999) In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, eds. Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K. & Uhler, M. D. (Lippincott, Philadelphia), 637–670

Coull AJ, Lovett JK, Rothwell PM, for the Oxford Vascular Study (2004) Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services. BMJ 328:326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Covarrubias AE, Lecarpentier E, Lo A, Salahuddin S, Gray KJ, Karumanchi SA, Zsengellér ZK (2019) AP39, a Modulator of Mitochondrial Bioenergetics, Reduces Antiangiogenic Response and Oxidative Stress in Hypoxia-Exposed Trophoblasts: Relevance for Preeclampsia Pathogenesis. Am J Pathol 189:104–114. https://doi.org/10.1016/j.ajpath.2018.09.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration 825–836. https://doi.org/10.1111/cns.13105

da Rosa EJ, da Silva MH, Carvalho NR, Bridi JC, da Rocha JB, Carbajo-Pescador S, Mauriz JL, González-Gallego J, Soares FA (2012) Reduction of acute hepatic damage induced by acetaminophen after treatment with diphenyl diselenide in mice. Toxicol Pathol 40(4):605–613

Article  PubMed  Google Scholar 

da Silva MH, da Rosa EJ, de Carvalho NR, Dobrachinski F, da Rocha JB, Mauriz JL, González-Gallego J, Soares FA (2012) Acute brain damage induced by acetaminophen in mice: effect of diphenyl diselenide on oxidative stress and mitochondrial dysfunction. Neurotox Res 21(3):334–344

Article  CAS  PubMed  Google Scholar 

Dalla Corte CL, Wagner C, Sudati JH, Comparsi B, Leite GO, Busanello A, Soares FA, Aschner M, Rocha JB (2013) Effects of diphenyl diselenide on methylmercury toxicity in rats. Biomed Res Int 2013:983821

Article  PubMed  PubMed Central  Google Scholar 

Dickerson LM, Carek PJ, Quattlebaum RG (2007) Prevention of recurrent ischemic stroke. Am Fam Physician 76:382–388

PubMed  Google Scholar 

Dobrachinski F, da Silva MH, Tassi CL, de Carvalho NR, Dias GR, Golombieski RM, da Silva Loreto EL, da Rocha JB, Fighera MR, Soares FA (2014) Neuroprotective effect of diphenyl diselenide in a experimental stroke model: maintenance of redox system in mitochondria of brain regions. Neurotox Res 26(4):317–330

Article  CAS  PubMed  Google Scholar 

Elks PM, Renshaw SA, Meijer AH, Walmsley SR, Van Eeden FJ (2015) Exploring the HIFs, buts and maybes of hypoxia signalling in disease: Lessons from zebrafish models. DMM Dis Model Mech 8:1349–1360. https://doi.org/10.1242/dmm.021865

Article  CAS  PubMed  Google Scholar 

Gayibov UG, Komilov EJ, Rakhimov RN, Ergashev NA, Abdullajanova NG, Asrorov MI, Aripov TF (2019) Influence of new polyphenol compound from Euphorbia plant on mitochondrial function. J Microbiol Biotechnol Food Sci 8:1021–1025. https://doi.org/10.15414/jmbfs.2019.8.4.1021-1025

Article  CAS  Google Scholar 

Ghisleni G, Porciúncula LO, Cimarosti H, Rocha JBT, Salbego CG, Souza DO (2003) Diphenyl diselenide protects rat hippocampal slices submitted to oxygen-glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res 986(1–2):196–199

Article  CAS  PubMed  Google Scholar 

Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB, Powers S, Hamilton K (2021) Mitochondrial lactate metabolism : history and implications for exercise and disease The Journal of Physiology. J Physiol 3:863–888. https://doi.org/10.1113/JP278930

Article  CAS  Google Scholar 

Glaser V, Paula R De, Ana M, Hoffmann J, Humberto J, Alicia M, Lucia A, Alexandra DP (2014) Diphenyl diselenide administration enhances cortical mitochondrial number and activity by increasing hemeoxygenase type 1 content in a methylmercury-induced neurotoxicity mouse model. Mol Cell Biochem 1–8. https://doi.org/10.1007/s11010-013-1870-9

Gonzalez FJ, Xie C, Jiang C (2019) The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol 15. https://doi.org/10.1038/s41574-018-0096-z

Graziele B, Pinto AP, Cristina J, Batista J, Alberto-silva C, Silva M (2022) Diphenyl diselenide suppresses key virulence factors of Candida krusei, a neglected fungal pathogen. Biofouling 38:427–440. https://doi.org/10.1080/08927014.2022.2084388

Article  CAS  Google Scholar 

Hernansanz-Agustín P, Enríquez JA (2021) Generation of reactive oxygen species by mitochondria. Antioxidants 10:1–18. https://doi.org/10.3390/antiox10030415

Article  CAS  Google Scholar 

Hopkins RO, Bigler ED (2008) Hypoxic and anoxic conditions of the CNS. In: J. E. Morgan & J. H. Ricker (Eds.), Textbook of clinical neuropsychology. (pp. 521–535), New York: Taylor and Francis

Hort MA, Straliotto MR, de Oliveira J, Amoêdo ND, da Rocha JB, Galina A, Ribeiro-do-Valle RM, de Bem AF (2014) Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: Involvement of mitochondrial function. Biochimie 105:172–181

Article  CAS  PubMed  Google Scholar 

Ibrahim M, Hur B, Mussulini M, Moro L, Assis AMD, Rosemberg DB, Oliveira DLD, Rocha JBT, Schwab RS, Henrique P, Souza DO, Rico EP (2014) Anxiolytic effects of diphenyl diselenide on adult zebra fi sh in a novelty paradigm. Prog Neuropsychopharmacol Biol Psychiatry 54:187–194. https://doi.org/10.1016/j.pnpbp.2014.06.002

Article  CAS  PubMed  Google Scholar 

Ivannikov MV, Macleod GT (2013) Mitochondrial free Ca2+ levels and their effects on energy metabolism in drosophila motor nerve terminals. Biophys J 104:2353–2361. https://doi.org/10.1016/j.bpj.2013.03.064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leão MB, Rosa PCC, Wagner C, Lugokenski TH, Corte CLD (2018) Methylmercury and diphenyl diselenide interactions in Drosophila melanogaster : effects on development , behavior , and Hg levels. Environ Sci Pollut Res 21568–21576

Lee P, Chandel NS, Simon MC (2020) Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 21:268–283. https://doi.org/10.1038/s41580-020-0227-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Li X, Ma X, Xiao W, Zhang J (2022) Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics 23:1–19. https://doi.org/10.1186/s12864-022-08350-w

Article  CAS  Google Scholar 

Kalueff AV, Gebhardt M, Stewart AM et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86. https://doi.org/10.1089/zeb.2012.0861

Ma Q, Hu CT, Yue J, Luo Y, Qiao F, Chen LQ, Zhang ML, Du ZY (2020) High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish. Fish Physiol Biochem 46:665–679. https://doi.org/10.1007/s10695-019-00742-2

Article  CAS  PubMed  Google Scholar 

Martins CC, Rosa SG, Recchi AMS, Nogueira CW, Zeni G (2020) m-Trifluoromethyl-diphenyl diselenide (m-CF3-PhSe)2 modulates the hippocampal neurotoxic adaptations and abolishes a depressive-like phenotype in a short-term morphine withdrawal in mice. Prog Neuropsychopharmacol Biol Psychiatry 98:109803. https://doi.org/10.1016/j.pnpbp.2019.109803

Article  CAS 

留言 (0)

沒有登入
gif