Age Prediction Using Resting-State Functional MRI

Aamodt, E. B., Alnaes, D., de Lange, A.-M.G., Aam, S., Schellhorn, T., Saltvedt, I., ... & Westlye, L. T. (2023). Longitudinal brain age prediction and cognitive function after stroke. Neurobiology of Aging, 122, 55–64.

Article  PubMed  Google Scholar 

Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C., & Mechelli, A. (2021). Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine, 72.

Ballester, P. L., Suh, J. S., Ho, N. C., Liang, L., Hassel, S., Strother, S. C. ... & others. (2023). Gray matter volume drives the brain age gap in schizophrenia: a shap study. Schizophrenia, 9(1), 3.

Article  PubMed  PubMed Central  Google Scholar 

Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., ... & others. (2012). Clinical and biomarker changes in dominantly inherited alzheimer’s disease. New England Journal of Medicine, 367(9), 795–804.

Article  CAS  PubMed  Google Scholar 

Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck depression inventory–ii. Psychological assessment.

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.

Article  CAS  PubMed  Google Scholar 

Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 12083–12094.

Article  CAS  PubMed  Google Scholar 

Cole, J. H. , Poudel, R. P. , Tsagkrasoulis, D., Caan, M. W. , Steves, C. , Spector, T. D., & Montana, G. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage, 163(March), 115–124. arXiv:1612.02572, https://doi.org/10.1016/j.neuroimage.2017.07.059

Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernandez, V., Munoz Maniega, S., Royle, N., ... & othes. (2018). Brain age predicts mortality. Molecular psychiatry, 23(5), 1385–1392.

Article  CAS  PubMed  Google Scholar 

de Lange, A.-M. G., Anaturk, M., Rokicki, J., Han, L. K., Franke, K., Alnaes, D., ... & others. (2022). Mind the gap: Performance metric evaluation in brain-age prediction. Human Brain Mapping, 43(10), 3113–3129.

Article  PubMed  PubMed Central  Google Scholar 

Doucet, G. E., Bassett, D. S., Yao, N., Glahn, D. C., & Frangou, S. (2017). The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. American Journal of Psychiatry, 174(12), 1214–1222.

Article  PubMed  Google Scholar 

Elliott, M. L., Belsky, D. W., Knodt, A. R., Ireland, D., Melzer, T. R., Poulton, R., ... & Hariri, A. R. (2021). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Molecular psychiatry, 26(8), 3829–3838.

Article  PubMed  Google Scholar 

Franke, K., & Gaser, C. (2019). Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Frontiers in Neurology, 789.

Gonneaud, J., Baria, A. T., Pichet Binette, A., Gordon, B. A., Chhatwal, J. P., & Cruchaga, C. (2021). Accelerated functional brain aging in pre-clinical familial alzheimer’s disease. Nature Communications, 12(1), 5346.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63–72.

Article  PubMed  Google Scholar 

Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fmri preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 82, 208–225.

Article  PubMed  Google Scholar 

Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., & Saripan, M. I. (2021). Diagnostic power of resting-state fmri for detection of network connectivity in alzheimer’s disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9), 2941–2968.

Article  PubMed  PubMed Central  Google Scholar 

James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical learning (Vol. 112). Springer.

Jawinski, P., Markett, S., Drewelies, J., Düzel, S., Demuth, I., Steinhagen-Thiessen, E., ... & others. (2022). Linking brain age gap to mental and physical health in the berlin aging study ii. Frontiers in Aging Neuroscience, 14, 791222.

Article  PubMed  PubMed Central  Google Scholar 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.

Article  PubMed  Google Scholar 

Jiang, H., Lu, N., Chen, K., Yao, L., Li, K., Zhang, J., & Guo, X. (2020). Predicting brain age of healthy adults based on structural mri parcellation using convolutional neural networks. Frontiers in Neurology, 10, 1346.

Article  PubMed  PubMed Central  Google Scholar 

Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L. M., Walters, G. B., Gudbjartsson, D., ... & Ulfarsson, M. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nature Communications, 10(1), 5409.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Kang, S., Eum, S., Chang, Y., Koyanagi, A., Jacob, L., Smith, L., ... & Song, T. -J. (2022). Burden of neurological diseases in asia from 1990 to 2019: a systematic analysis using the global burden of disease study data. BMJ Open, 12(9), e059548.

Article  PubMed  PubMed Central  Google Scholar 

Kucikova, L., Goerdten, J., Dounavi, M.-E., Mak, E., Su, L., Waldman, A. D., ... & Ritchie, C. W. (2021). Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive alzheimer’s disease. Neuroscience & Biobehavioral Reviews, 129, 142–153.

Article  Google Scholar 

Lancaster, J. , Lorenz, R. , Leech, R., & Cole, J. H. (2018). Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Frontiers in Aging Neuroscience, 10(FEB), 1–10. https://doi.org/10.3389/fnagi.2018.00028

Lee, J., Burkett, B. J., Min, H.-K., Senjem, M. L., Lundt, E. S., Botha, H., ... & others. (2022). Deep learning-based brain age prediction in normal aging and dementia. Nature Aging, 2(5), 412–424.

Article  PubMed  PubMed Central  Google Scholar 

Lee, P. -L. , Kuo, C. -Y. , Wang, P. -N. , Chen, L. -K. , Lin, C. -P. , Chou, K. -H., & Chung, C. -P. (2022). Regional rather than global brain age mediates cognitive function in cerebral small vessel disease. Brain Communications, 4(5), fcac233.

Li, H. , Satterthwaite, T. D., & Fan, Y. (2018). Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks. 2018 ieee 15th international symposium on biomedical imaging (isbi 2018) (pp. 101–104).

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., ... & others. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148, 179–188.

Article  PubMed  Google Scholar 

Liu, T., Wang, L., Suo, D., Zhang, J., Wang, K., Wang, J., ... & Yan, T. (2022). Resting-state functional mri of healthy adults: temporal dynamic brain coactivation patterns. Radiology, 304(3), 624–632.

Article  PubMed  Google Scholar 

Madan, C. R., & Kensinger, E. A. (2018). Predicting age from cortical structure across the lifespan. European Journal of Neuroscience, 47(5), 399–416. https://doi.org/10.1111/ejn.13835

Article  PubMed  Google Scholar 

Millar, P. R., Luckett, P. H., Gordon, B. A., Benzinger, T. L., Schindler, S. E., & Fagan, A. M. (2022). Predicting brain age from functional connectivity in symptomatic and preclinical alzheimer disease. Neuroimage, 256, 119228.

Article  PubMed  Google Scholar 

Mohajer, B., Abbasi, N., Mohammadi, E., Khazaie, H., Osorio, R. S., Rosenzweig, I., ... & others. (2020). Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Human Brain Mapping, 41(11), 3034–3044.

Article  PubMed  PubMed Central  Google Scholar 

Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., ... & Chertkow, H. (2005). The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.

Article  PubMed  Google Scholar 

Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., & Abd-Allah, F. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. The Lancet Public Health, 7(2), e105–e125.

Article  Google Scholar 

Niu, X., Zhang, F., Kounios, J., & Liang, H. (2020). Improved prediction of brain age using multimodal neuroimaging data. Human Brain Mapping, 41(6), 1626–1643.

Article  PubMed  Google Scholar 

Oschmann, M., Gawryluk, J. R., & Initiative, A. D. N. (2020). A longitudinal study of changes in resting-state functional magnetic resonance imaging functional connectivity networks during healthy aging. Brain Connectivity, 10(7), 377–384.

Article  PubMed  PubMed Central  Google Scholar 

Pardoe, H. R., & Kuzniecky, R. (2018). NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction. Neuroinformatics, 16(1), 43–49. https://doi.org/10.1007/s12021-017-9346-9

Article  PubMed  Google Scholar 

Podgórski, P., Waliszewska-Prosół, M., Zimny, A., Sąsiadek, M., & Bladowska, J. (2021). Resting-state functional connectivity of the ageing female brain-differences between young and elderly female adults on multislice short tr rs-fmri. Frontiers in Neurology, 12, 645974.

Article  PubMed  PubMed Central  Google Scholar 

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., ... & others. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Preische, O., Schultz, S. A., Apel, A., Kuhle, J., Kaeser, S. A., Barro, C., ... & others. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic alzheimer’s disease. Nature Medicine, 25(2), 277–283.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ran, C., Yang, Y., Ye, C., Lv, H., & Ma, T. (2022). Brain age vector: A measure of brain aging with enhanced neurodegenerative disorder specificity. Human Brain Mapping, 43(16), 5017–5031.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif