Aamodt, E. B., Alnaes, D., de Lange, A.-M.G., Aam, S., Schellhorn, T., Saltvedt, I., ... & Westlye, L. T. (2023). Longitudinal brain age prediction and cognitive function after stroke. Neurobiology of Aging, 122, 55–64.
Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C., & Mechelli, A. (2021). Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine, 72.
Ballester, P. L., Suh, J. S., Ho, N. C., Liang, L., Hassel, S., Strother, S. C. ... & others. (2023). Gray matter volume drives the brain age gap in schizophrenia: a shap study. Schizophrenia, 9(1), 3.
Article PubMed PubMed Central Google Scholar
Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., ... & others. (2012). Clinical and biomarker changes in dominantly inherited alzheimer’s disease. New England Journal of Medicine, 367(9), 795–804.
Article CAS PubMed Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck depression inventory–ii. Psychological assessment.
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.
Article CAS PubMed Google Scholar
Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 12083–12094.
Article CAS PubMed Google Scholar
Cole, J. H. , Poudel, R. P. , Tsagkrasoulis, D., Caan, M. W. , Steves, C. , Spector, T. D., & Montana, G. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage, 163(March), 115–124. arXiv:1612.02572, https://doi.org/10.1016/j.neuroimage.2017.07.059
Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernandez, V., Munoz Maniega, S., Royle, N., ... & othes. (2018). Brain age predicts mortality. Molecular psychiatry, 23(5), 1385–1392.
Article CAS PubMed Google Scholar
de Lange, A.-M. G., Anaturk, M., Rokicki, J., Han, L. K., Franke, K., Alnaes, D., ... & others. (2022). Mind the gap: Performance metric evaluation in brain-age prediction. Human Brain Mapping, 43(10), 3113–3129.
Article PubMed PubMed Central Google Scholar
Doucet, G. E., Bassett, D. S., Yao, N., Glahn, D. C., & Frangou, S. (2017). The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. American Journal of Psychiatry, 174(12), 1214–1222.
Elliott, M. L., Belsky, D. W., Knodt, A. R., Ireland, D., Melzer, T. R., Poulton, R., ... & Hariri, A. R. (2021). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Molecular psychiatry, 26(8), 3829–3838.
Franke, K., & Gaser, C. (2019). Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Frontiers in Neurology, 789.
Gonneaud, J., Baria, A. T., Pichet Binette, A., Gordon, B. A., Chhatwal, J. P., & Cruchaga, C. (2021). Accelerated functional brain aging in pre-clinical familial alzheimer’s disease. Nature Communications, 12(1), 5346.
Article ADS CAS PubMed PubMed Central Google Scholar
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63–72.
Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fmri preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 82, 208–225.
Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., & Saripan, M. I. (2021). Diagnostic power of resting-state fmri for detection of network connectivity in alzheimer’s disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9), 2941–2968.
Article PubMed PubMed Central Google Scholar
James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical learning (Vol. 112). Springer.
Jawinski, P., Markett, S., Drewelies, J., Düzel, S., Demuth, I., Steinhagen-Thiessen, E., ... & others. (2022). Linking brain age gap to mental and physical health in the berlin aging study ii. Frontiers in Aging Neuroscience, 14, 791222.
Article PubMed PubMed Central Google Scholar
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.
Jiang, H., Lu, N., Chen, K., Yao, L., Li, K., Zhang, J., & Guo, X. (2020). Predicting brain age of healthy adults based on structural mri parcellation using convolutional neural networks. Frontiers in Neurology, 10, 1346.
Article PubMed PubMed Central Google Scholar
Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L. M., Walters, G. B., Gudbjartsson, D., ... & Ulfarsson, M. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nature Communications, 10(1), 5409.
Article ADS PubMed PubMed Central Google Scholar
Kang, S., Eum, S., Chang, Y., Koyanagi, A., Jacob, L., Smith, L., ... & Song, T. -J. (2022). Burden of neurological diseases in asia from 1990 to 2019: a systematic analysis using the global burden of disease study data. BMJ Open, 12(9), e059548.
Article PubMed PubMed Central Google Scholar
Kucikova, L., Goerdten, J., Dounavi, M.-E., Mak, E., Su, L., Waldman, A. D., ... & Ritchie, C. W. (2021). Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive alzheimer’s disease. Neuroscience & Biobehavioral Reviews, 129, 142–153.
Lancaster, J. , Lorenz, R. , Leech, R., & Cole, J. H. (2018). Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Frontiers in Aging Neuroscience, 10(FEB), 1–10. https://doi.org/10.3389/fnagi.2018.00028
Lee, J., Burkett, B. J., Min, H.-K., Senjem, M. L., Lundt, E. S., Botha, H., ... & others. (2022). Deep learning-based brain age prediction in normal aging and dementia. Nature Aging, 2(5), 412–424.
Article PubMed PubMed Central Google Scholar
Lee, P. -L. , Kuo, C. -Y. , Wang, P. -N. , Chen, L. -K. , Lin, C. -P. , Chou, K. -H., & Chung, C. -P. (2022). Regional rather than global brain age mediates cognitive function in cerebral small vessel disease. Brain Communications, 4(5), fcac233.
Li, H. , Satterthwaite, T. D., & Fan, Y. (2018). Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks. 2018 ieee 15th international symposium on biomedical imaging (isbi 2018) (pp. 101–104).
Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., ... & others. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148, 179–188.
Liu, T., Wang, L., Suo, D., Zhang, J., Wang, K., Wang, J., ... & Yan, T. (2022). Resting-state functional mri of healthy adults: temporal dynamic brain coactivation patterns. Radiology, 304(3), 624–632.
Madan, C. R., & Kensinger, E. A. (2018). Predicting age from cortical structure across the lifespan. European Journal of Neuroscience, 47(5), 399–416. https://doi.org/10.1111/ejn.13835
Millar, P. R., Luckett, P. H., Gordon, B. A., Benzinger, T. L., Schindler, S. E., & Fagan, A. M. (2022). Predicting brain age from functional connectivity in symptomatic and preclinical alzheimer disease. Neuroimage, 256, 119228.
Mohajer, B., Abbasi, N., Mohammadi, E., Khazaie, H., Osorio, R. S., Rosenzweig, I., ... & others. (2020). Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Human Brain Mapping, 41(11), 3034–3044.
Article PubMed PubMed Central Google Scholar
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., ... & Chertkow, H. (2005). The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.
Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., & Abd-Allah, F. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. The Lancet Public Health, 7(2), e105–e125.
Niu, X., Zhang, F., Kounios, J., & Liang, H. (2020). Improved prediction of brain age using multimodal neuroimaging data. Human Brain Mapping, 41(6), 1626–1643.
Oschmann, M., Gawryluk, J. R., & Initiative, A. D. N. (2020). A longitudinal study of changes in resting-state functional magnetic resonance imaging functional connectivity networks during healthy aging. Brain Connectivity, 10(7), 377–384.
Article PubMed PubMed Central Google Scholar
Pardoe, H. R., & Kuzniecky, R. (2018). NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction. Neuroinformatics, 16(1), 43–49. https://doi.org/10.1007/s12021-017-9346-9
Podgórski, P., Waliszewska-Prosół, M., Zimny, A., Sąsiadek, M., & Bladowska, J. (2021). Resting-state functional connectivity of the ageing female brain-differences between young and elderly female adults on multislice short tr rs-fmri. Frontiers in Neurology, 12, 645974.
Article PubMed PubMed Central Google Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., ... & others. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.
Article CAS PubMed PubMed Central Google Scholar
Preische, O., Schultz, S. A., Apel, A., Kuhle, J., Kaeser, S. A., Barro, C., ... & others. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic alzheimer’s disease. Nature Medicine, 25(2), 277–283.
Article CAS PubMed PubMed Central Google Scholar
Ran, C., Yang, Y., Ye, C., Lv, H., & Ma, T. (2022). Brain age vector: A measure of brain aging with enhanced neurodegenerative disorder specificity. Human Brain Mapping, 43(16), 5017–5031.
Comments (0)