Coal: exploration, reserves, and utilization

Taylor GH, Teichmuller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic petrology. Gebruder Borntraeger, Berlin, p 704

Google Scholar 

Thomas L (2013) Coal geology, 2nd edn. Wiley-Blackwell, Chichester, p 444

Google Scholar 

Diessel CFK (1992) Coal-bearing depositional system. Springer-Verlag, Berlin, p 721

Book  Google Scholar 

Thomas L (2002) Coal geology, 1st edn. Wiley-Blackwell, Chichester, p 384

Google Scholar 

Jovanovski G, Boev B, Makreski P (2023) Chemistry and geology of coal: nature, composition, coking, gasification, liquefaction, production of chemicals, formation, peatification, coalification, coal types, and ranks. ChemTexts 9:2

Article  Google Scholar 

Speight JG (2015) Handbook of coal analysis. Wiley, New Jersey, p 345

Book  Google Scholar 

Miller BG (2016) Clean coal engineering technology, 2nd edn. Elsevier, p 856

Google Scholar 

Williams O, Ure A, Stevens L, Binner E, Dodds C, Kingman DB, Dash PS, Lester E (2019) Formation of metallurgical coke within minutes through coal densification and microwave energy. Energy Fuel 33:6817–6828

Article  CAS  Google Scholar 

Vasireddy S, Morreale B, Cugini A, Song C, Spivey JJ (2011) Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy Environ Sci 4:311–345

Article  Google Scholar 

Al-Zareer M, Dincer I, Rosen MA (2020) Production of hydrogen-rich syngas from novel processes for gasification of petroleum cokes and coals. Int J Hydrog Energy 45:11577–11592

Article  CAS  Google Scholar 

https://en.wikipedia.org/wiki/Sasol. Accessed 25 Dec 2023

Qin F, Jiang W, Ni G, Wang J, Zuo P, Qu S, Shen W (2019) From coal-heavy oil co-refining residue to asphaltene-based functional carbon materials. ACS Sustain Chem Eng 7:4523–4531

Article  CAS  Google Scholar 

Li C, Wang Y, Xiao N, Li H, Ji Y, Guo Z, Liu C, Qiu J (2019) Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction. Carbon 151:46–52

Article  CAS  Google Scholar 

Pang LSK (1993) Fullerenes from brown (lignite) coal. Fuel Process Technol 34:147–155

Article  CAS  Google Scholar 

Qiu J, Li Y, Wang Y, Wang T, Zhao Z, Zhou Y, Li F, Cheng H (2003) High-purity single-wall carbon nanotubes synthesized from coal by arc discharge. Carbon 41:2170–2173

Article  CAS  Google Scholar 

Zhou H, Bhattarai R, Li Y, Si B, Dong X, Wang T, Yao Z (2022) Towards sustainable coal industry: turning coal bottom ash into wealth. Sci Total Environ 804:149985

Article  CAS  PubMed  ADS  Google Scholar 

Freese B (2004) Coal: a human history. Penguin, New York, p 137

Google Scholar 

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.energyinst.org%2F__data%2Fassets%2Fexcel_doc%2F0007%2F1055545%2FEI-stats-review-all-data.xlsx. Accessed 25 Dec 2023

http://www.statista.com/statistics/1279674/worldwide-coal-demand-share-by-sector/. Accessed 25 Dec 2023

International Energy Agency (IEA), 2023, Coal market update https://iea.blob.core.windows.net/assets/6d364082-35fc-49cf-bf3e-c06a05a3445d/CoalMarketUpdate_July2023.pdf. Accessed 25 Dec 2023

https://ourworldindata.org/grapher/annual-co2-coal?tab=chart&time=1990..latest. Accessed 25 Dec 2023

Ward CR (2011) Coal exploration and mining geology. In: De Vivo B, Grasemann B, Stüwe K (eds) Geology, vol 5. UNESCO-EOLSS (Encyclopedia of Life Support System), p 32

Google Scholar 

Thomas L (2020) Coal geology, 3rd edn. Wiley Blackwell, New York, p 536

Book  Google Scholar 

Popov VS (1957) Underground geological survey. In: Troyanskii SV (ed) Mining encyclopedia, vol 2. Geology of coal deposits and geodetic survey, pp 124–140 (in Russian)

Google Scholar 

Hatherly PJ (2013) Overview on the application of geophysics in coal mining. Int J Coal Geol 114:74–84

Article  CAS  Google Scholar 

Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge, p 770

Book  Google Scholar 

Arsenović S (2020) The spatial position of Đurđevik coal basin: geophysical-geological model, PhD thesis. University of Belgrade, Faculty of Mining and Geology

Arsenović S, Urošević M, Sretenović B, Cvetkov V, Životić D (2016) Modelling of a coal seam of the deposit Durdevik (BiH) by means of 2D reflection seismic imaging. J Geophys Eng 13:422–428

Article  Google Scholar 

https://www.rockware.com/logplot-image-gallery/. Accessed 25 Dec 2023

Dragišić V, Polomčić D (2009) Hydrogeological dictionary. Belgrade, Faculty of Mining and Geology, p 572

Google Scholar 

Pavlović V, Šubaranović T, Polomčić D (2012) Surface mine drainage systems. University of Belgrade Faculty of Mining and Geology, Belgrade, p 522

Google Scholar 

https://i.ytimg.com/vi/9uPcLGC9rlQ/maxresdefault.jpg. Accessed 25 Dec 2023

Pohl W (2011) Economic geology principles and practice: metals, minerals, coal and hydrocarbons—introduction to formation and sustainable exploitation of mineral deposits. Wiley-Blackwell, p 663

Book  Google Scholar 

International Template for the Public Reporting of Exploration Results, Mineral Resources and Mineral Reserves (The CRIRSCO Template). 2013. https://www.crirsco.com/templates/international_reporting_template_november_2013.pdf. Accessed 25 Dec 2023

United Nations International Classification for Reserves/Resources: Solid Fuels and Mineral Commodities. 2009. https://unece.org/DAM/energy/se/pdfs/UNFC/unfc2009/UNFC2009_ES39_e.pdf. Accessed 25 Dec 2023

Bide T, Brown T, Gun G, Shaw R, Kresse C, Deady E, Delgado P, Horváth Z, Bavec Š, Rokavec D, Eloranta T et al (2019) Deliverable 1.4: Draft good practice guidelines for harmonisation of resource and reserve data. In Optimizing Quality of In-formation in RAw MAterial Data Collection across Europe—ORAMA; European Commission: Luxembourg, p. 90. https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c3abdd5a&appId=PPGMS. Accessed 25 Dec 2023

JORC (2012) https://jorc.org/. Accessed 25 Dec 2023

Pan-European Standard for Reporting of Exploration Results, Mineral Resources and Reserves (PERC Standard) (2017) https://www.crirsco.com/docs/PERC_REPORTING_STANDARD_2017.pdf. Accessed 25 Dec 2023

https://image4.slideserve.com/7518631/resource-vs-reserve-resource-vs-reserve-l.jpg. Accessed 25 Dec 2023

Nelson PF (2013) Environmental issues: emissions, pollution control, assessment and management. In: Osborne D (ed) The coal handbook: towards cleaner production: coal utilisation, vol 2. Woodhead, Cambridge, pp 21–62

Chapter  Google Scholar 

Suárez-Ruiz I, Ward CR (2008) Basic factors controlling coal quality and technological behavior of coal. In: Suárez-Ruiz I, Crelling JC (eds) Applied coal petrology, the role of petrology in coal utilization. Elsevier, Academic, Amsterdam, pp 19–59

Chapter  Google Scholar 

ECE-UN (1998) Economic Commission for Europe, committee on sustainable energy—United Nations: International Classification of in-Seam Coals. Energy 19:41

Google Scholar 

https://www.nextinsight.net/images/stories/GeoEnergy/coal-rank.jpg. Accessed 25 Dec 2023

Inumaru J, Hasegawa T, Shirai H, Nishida H, Noda N, Ohyama S (2021) Fossil fuels combustion and environmental issues. In: Ozawa M, Asano H (eds) Advances in power boilers. Elsevier, Amsterdam, pp 1–59

Google Scholar 

Robl T, Oberlink A, Jones R (2017) Coal combustion products (CCP’s), characteristics, utilization and beneficiation. Woodhead, Cambridge, p 564

Google Scholar 

Coal Combustion Byproducts, University of Kentucky http://www.uky.edu/KGS/coal/coal-for-combustionbyproducts.php. Accessed 25 Dec 2023.

Suarez-Ruiz I, Crelling JC (2008) Applied coal petrology, the role of petrology in coal utilization. Elsevier, Academic, Amsterdam, p 388

Google Scholar 

American Coal Ash Association, 2023. Coal Combustion Product (CCP) Production and Use Survey Report. https://acaa-usa.org/wp-content/uploads/2022/12/2021-Production-and-Use-Survey-Results-FINAL.pdf. Accessed 25 Dec 2023

Dai S, Zhao L, Hower JC, Johnston MN, Song W, Wang P, Zhang S (2014) Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy Fuel 28:1502–1514

Article  CAS  Google Scholar 

Dai S, Finkelman RB (2018) Coal as a promising source of critical elements: progress and future prospects. Int J Coal Geol 186(1):155–164

Article  CAS  Google Scholar 

Dong XX, Jin BS, Cao SS, Meng F, Tong C, Ding QF, Tong C (2020) Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO2 methanation. Waste Manag 107:244–251

Article  CAS  PubMed  Google Scholar 

Gollakota ARK, Volli V, Shu CM (2019) Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ 672:951–989

Article  CAS  PubMed  ADS  Google Scholar 

https://mechanicaljungle.com/wp-content/uploads/2021/05/Coal-Power-Plant-Working.jpg. Accessed 25 Dec 2023

https://www.vizagsteel.com/images/co_battery.jpg. Accessed 25 Dec 2023

Dıez MA, Alvarez R, Barriocanal C (2002) Coal for metallurgical coke production: predictions of coke quality and future requirements for coke making. Int J Coal Geol 50:389–412

Article  Google Scholar 

Razzaq R, Li C, Zhang S (2013) Coke oven gas: availability, properties, purification, and utilization in China. Fuel 113:287–299

Article  CAS  Google Scholar 

Peng H, Suli Z, Kuangdi X (2023) Coke oven gas. In: Xu K (ed) The ECPH encyclopedia of mining and metallurgy. Springer, Singapore

Google Scholar 

Moral G, Ortiz-Imedio R, Ortiz A, Gorri D, Ortiz I (2022) Hydrogen recovery from coke oven gas. comparative analysis of technical alternatives. Ind Eng Chem Res 61:6106–6124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portha J-F, Uribe-Soto W, Commenge J-M, Valentin S, Falk L (2021) Techno-economic and carbon footprint analyses of a coke oven gas reuse process for methanol production. Processes 9:1042

Article  CAS  Google Scholar 

Ke R, Zhang T, Bai Y, Zhai Y, Jia Y, Zhou X, Cheng Z, Hong J (2022) Environmental and economical assessment of high-value utilization routes for coke oven gas in China. J Clean Prod 353:131668

Article  Google Scholar 

Souza Filho IR, Ma Y, Raabe D, Springer H (2023) Fundamentals of green steel production: on the role of gas pressure during hydrogen reduction of iron ores. JOM 75:2274–2286

Article  CAS  PubMed  ADS  Google Scholar 

https://www.uky.edu/KGS/coal/images/10_how%20steel%20is%20made%20diagram.jpg. Accessed 25 Dec 2023

Breault RW (2010) Gasification processes old and new: a basic review of the major technologies. Energies 3:216–240

Article  CAS  Google Scholar 

Shadle LJ, Breault RW, Bennet J (2012) Gasification technologies. In: Chen W-Y et al (eds) Handbook of climate change mitigation and adaptation. Springer, New York, pp 2557–2627

留言 (0)

沒有登入
gif