Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis

Björkegren JLM, Lusis AJ (2022) Atherosclerosis: recent developments. Cell 185(10):1630–1645. https://doi.org/10.1016/j.cell.2022.04.004

Article  CAS  PubMed  Google Scholar 

World health statistics 2021: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789240027053

Gimbrone MA JR, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. https://doi.org/10.1161/circresaha.115.306301

Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C (2022) Pathophysiology of atherosclerosis. Int J Mol Sci 23(6). https://doi.org/10.3390/ijms23063346

Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC (2020) Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 17(1):52–63. https://doi.org/10.1038/s41569-019-0239-5

Article  PubMed  Google Scholar 

Mastrogiacomo L, Ballagh R, Venegas-Pino DE, Kaur H, Shi P, Werstuck GH (2023) The effects of hyperglycemia on early endothelial activation and the initiation of atherosclerosis. AmJ Pathol 193(1):121–133. https://doi.org/10.1016/j.ajpath.2022.09.004

Article  CAS  Google Scholar 

Santiago-fernandez C, Rodríguez-Díaz C, Ho-Plagaro A, Gutierrez-Repiso C, Oliva-Olivera W, Martin-ReyeS F, Mela V, Bautista R, Tome M, Gómez-Maldonado J et al (2022) EVOO Promotes a less atherogenic profile than sunflower oil in smooth muscle cells through the extracellular vesicles secreted by endothelial cells. Front Nut 9:867745. https://doi.org/10.3389/fnut.2022.867745

Gaba P, Gersh BJ, Muller J, Narula J, Stone GW (2023) Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research. Nat Rev Cardiol 20(3):181–196. https://doi.org/10.1038/s41569-022-00769-8

Article  PubMed  Google Scholar 

Depuydt MAC, Prange KHM, Slenders L, Örd T, Elbersen D, Boltjes A, de Jager SCA, Asselbergs FW, de Borst GJ, Aavik E et al (2020) Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res 127(11):1437–1455. https://doi.org/10.1161/circresaha.120.316770

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libby P (2013) Mechanisms of acute coronary syndromes. N Eng J Med 369(9):883–884. https://doi.org/10.1056/NEJMc1307806

Article  Google Scholar 

Quillard T, Araújo HA, Franck G, Shwartz E, Sukhova G, Libby P (2015) TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 36(22):1394–1404. https://doi.org/10.1093/eurheartj/ehv044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Zhu Y, Zhu J, Xie Y, Wu R, Zhong J, Qiu Z, Jiang L (2022) circ_0086296 induced atherosclerotic lesions via the IFIT1/STAT1 feedback loop by sponging miR-576–3p. Cell Mol Biol Lett 27(1):80. https://doi.org/10.1186/s11658-022-00372-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu F, Zhang Y, Wang Z, Gong W, Zhang C (2021) Hsa_circ_0030042 regulates abnormal autophagy and protects atherosclerotic plaque stability by targeting eIF4A3. Theranostics 11(11):5404–5417. https://doi.org/10.7150/thno.48389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Z, Jiang Y (2023) Circular RNA CircPDS5B impairs angiogenesis following ischemic stroke through its interaction with hnRNPL to inactivate VEGF-A. Neurobiology of disease 181:106080. https://doi.org/10.1016/j.nbd.2023.106080

Article  CAS  PubMed  Google Scholar 

Badacz R, Kleczyński P, Legutko J, Żmudka K, Gacoń J, Przewłocki T, Kabłak-Ziembicka A (2021) Expression of miR-1–3p, miR-16–5p and miR-122–5p as possible risk factors of secondary cardiovascular events. Biomedicines 9:(8). https://doi.org/10.3390/biomedicines9081055

Article  CAS  PubMed Central  Google Scholar 

Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q et al (2017) Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction. Theranostics 7(11):2863–2877. https://doi.org/10.7150/thno.19353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Sun D, Pu W, Wang J, Peng Y (2020) Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer 6(4):319–336. https://doi.org/10.1016/j.trecan.2020.01.012

Article  CAS  PubMed  Google Scholar 

Wang X, Jian W, Luo Q, Fang L (2022) CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis 13(9):794. https://doi.org/10.1038/s41419-022-05246-1

Article  CAS  Google Scholar 

Zhang Y, Zhang X, Shen Z, Qiu Q, Tong X, Pan J, Zhu M, Hu X, Gong C (2023) BmNPV circular RNA-encoded peptide VSP39 promotes viral replication. Int J Biol Macromol 228:299–310. https://doi.org/10.1016/j.ijbiomac.2022.12.173

Article  CAS  PubMed  Google Scholar 

Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW et al (2022) A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer 21(1):93. https://doi.org/10.1186/s12943-022-01537-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G (2022) Circular RNA: an emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release :J Control Release Soc 348:84–94. https://doi.org/10.1016/j.jconrel.2022.05.043

Article  CAS  Google Scholar 

Wu WP, Zhou MY, Liu DL, Min X, Shao T, Xu ZY, Jing X, Cai MY, Xu S, Liang X et al (2021) circGNAQ, a circular RNA enriched in vascular endothelium, inhibits endothelial cell senescence and atherosclerosis progression. Mol Ther Nucleic Acids 26:374–387. https://doi.org/10.1016/j.omtn.2021.07.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Zhang D, Yao W, Wu Z, Cheng J, Ji Y, Dong L, Zhao C, Wang H (2022) Ligustrazine exerts neuroprotective effects via circ_0008146/miR-709/Cx3cr1 axis to inhibit cell apoptosis and inflammation after cerebral ischemia/reperfusion injury. Brain Res Bull 190:244–255. https://doi.org/10.1016/j.brainresbull.2022.10.011

Article  CAS  PubMed  Google Scholar 

Zhuang Y, Fan WP, Yan HS (2023) Overexpression of Circ_0005585 alleviates Cerebral ischemia reperfusion injury via targeting MiR-16–5p. Bull Exp Biol Med 175(3):304–310. https://doi.org/10.1007/s10517-023-05857-4

Article  CAS  PubMed  Google Scholar 

Crudele F, Bianchi N, Terrazzan A, Ancona P, Frassoldati A, Gasparini P, D’Adamo AP, Papaioannou D, Garzon R, WóJCICKA A et al (2023) Circular RNAs could encode unique proteins and affect cancer pathways. Biology 12:(4). https://doi.org/10.3390/biology12040493

Article  CAS  Google Scholar 

Rai AK, Lee B, Hebbard C, Uchida S, Garikipati VNS (2021) Decoding the complexity of circular RNAs in cardiovascular disease. Pharmacoll Res 171:105766. https://doi.org/10.1016/j.phrs.2021.105766

Article  CAS  Google Scholar 

Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21(8):475–490. https://doi.org/10.1038/s41580-020-0243-y

Article  CAS  PubMed  Google Scholar 

Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, Shi Z, You Y (2021) EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling. Neuro-oncology 23(4):611–624. https://doi.org/10.1093/neuonc/noaa214

Article  CAS  PubMed  Google Scholar 

Schmidt CA, Matera AG (2020) tRNA introns: presence, processing, and purpose. Wiley Interdiscip Rev RNA 11(3):e1583. https://doi.org/10.1002/wrna.1583

Article  CAS  PubMed  Google Scholar 

Aktaş T, Avşar Ilık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, Manke T, Backofen R, Akhtar A (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544(7648):115–119. https://doi.org/10.1038/nature21715

Article  CAS  PubMed  Google Scholar 

Dattilo D, di Timoteo G, Setti A, Giuliani A, Peruzzi G, Beltran Nebot M, Centrón-Broco A, Mariani D, Mozzetta C, Bozzoni I (2023) The m(6)A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs. Nat Commun 14(1):1898. https://doi.org/10.1038/s41467-023-37578-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Zhang JL, Lei YN, Liu XQ, Xue W, Zhang Y, Nan F, Gao X, Zhang J, Wei J et al (2021) Linking circular intronic RNA degradation and function in transcription by RNase H1. Science China Life sciences 64(11):1795–1809. https://doi.org/10.1007/s11427-021-1993-6

Article  CAS  PubMed  Google Scholar 

Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, Xue W, Cui Y, Dong K, Ding H et al (2019) Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177(4):865-880.E821. https://doi.org/10.1016/j.cell.2019.03.046

Article  CAS  PubMed  Google Scholar 

Fischer JW, Busa VF, Shao Y, Leung AKL (2020) Structure-Mediated RNA Decay by UPF1 and G3BP1. Molecular cell 78(1):70-84.e76. https://doi.org/10.1016/j.molcel.2020.01.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422. https://doi.org/10.1038/emboj.2011.359

Article 

留言 (0)

沒有登入
gif