Nano-Mediated Molecular Targeting in Diagnosis and Mitigation of Wilson Disease

Arnal N, de Alaniz MJT, Marra CA (2012) Cytotoxic effects of copper overload on human-derived lung and liver cells in culture. Elsevier. https://doi.org/10.1016/j.bbagen.2012.03.007

Book  Google Scholar 

Patwa J, Thakur A, Sharma A, Flora SJS (2020) Monoisoamyl DMSA reduced copper-induced neurotoxicity by lowering 8-OHdG level, amyloid beta and Tau protein expressions in Sprague-Dawley rats. Metallomics 12:1428–1448. https://doi.org/10.1039/D0MT00083C

Article  CAS  PubMed  Google Scholar 

Chaudhry H, Anilkumar A (2023) Wilson disease

Hepatology EAFTSOTL-J of (2012) EASL clinical practice guidelines: Wilson’s disease. Elsevier 56:671–685

Google Scholar 

Netter P, Bannwarth B, Péré P, Nicolas A (1987) Clinical pharmacokinetics of D-penicillamine. Clin Pharmacokinet 13:317–333. https://doi.org/10.2165/00003088-198713050-00003

Article  CAS  PubMed  Google Scholar 

Li W-J, Chen C, You Z-F et al (2016) Current drug managements of Wilson’s disease: from west to east. Curr Neuropharmacol 14:322. https://doi.org/10.2174/1570159X14666151130222427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aronson J (2014) Meyler’s side effects of drugs 15E: the International Encyclopedia of Adverse Drug Reactions and Interactions

Rosenberg RN, Pascual JM (2020) Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 6th ed. Volume 1. Elsevier

Merle U, Schaefer M, Ferenci P, Stremmel W (2007) Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut 56:115–120. https://doi.org/10.1136/gut.2005.087262

Mhaske A, Sharma S, RS-J of DDS (2023) Nanotheranostic: the futuristic therapy for copper mediated neurological sequelae. Elsevier, pp. 1773–2247

Google Scholar 

Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046. https://doi.org/10.1152/PHYSREV.00004.2006

Article  CAS  PubMed  Google Scholar 

Dmitriev O, Tsivkovskii R, Abildgaard F et al (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 103:5302–5307. https://doi.org/10.1073/PNAS.0507416103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Møller LB, Horn N, Jeppesen TD et al (2011) Clinical presentation and mutations in Danish patients with Wilson disease. Eur J Hum Genet 19:935–941. https://doi.org/10.1038/ejhg.2011.80

Caca K, Ferenci P, Kühn H et al (2001) High prevalence of the H1069Q mutation in East German patients with Wilson disease: rapid detection of mutations by limited sequencing and phenotype–genotype. Elsevier 35:575–581

CAS  Google Scholar 

Kim G-H, Kim KM, Kim J et al (2007) Identification of novel ATP7B gene mutations and their functional roles in Korean patients with Wilson disease. Hum Mutat 28:1108–1113. https://doi.org/10.1002/humu.20574

Article  CAS  PubMed  Google Scholar 

Margarit E, Bach V, Gómez D et al (2005) Mutation analysis of Wilson disease in the Spanish population - identification of a prevalent substitution and eight novel mutations in the ATP7B gene. Clin Genet 68:61–68. https://doi.org/10.1111/J.1399-0004.2005.00439.X

Article  CAS  PubMed  Google Scholar 

Penning LC, Berenguer M, Czlonkowska A et al (2023) A century of progress on Wilson disease and the enduring challenges of genetics, diagnosis, and treatment. Biomedicines 11. https://doi.org/10.3390/biomedicines11020420

Scheiber I, Brůha R, neurology PD-H of clinical (2017) Pathogenesis of Wilson disease. Elsevier 142:43–55

Google Scholar 

Gil-Bea FJ, Aldanondo G, Lasa-Fernández H et al (2017) Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med 19:e7. https://doi.org/10.1017/erm.2017.9

Yurkova I, Arnhold J, Fitzl G et al (2011) Fragmentation of mitochondrial cardiolipin by copper ions in the Atp7b−/− mouse model of Wilson’s disease. Elsevier 164:393–400

CAS  Google Scholar 

Li M, Li Y, Chen J et al (2007) Copper ions inhibit S-adenosylhomocysteine hydrolase by causing dissociation of NAD+ cofactor. Biochemistry 46:11451–11458. https://doi.org/10.1021/BI700395D

Article  CAS  PubMed  Google Scholar 

Niculescu M, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132:2333S–2335S

Article  CAS  PubMed  Google Scholar 

Guo H, Zhu P, Yan L et al (2014) The DNA methylation landscape of human early embryos. nature.comH Guo, P Zhu, L Yan, R Li, B Hu, Y Lian, J Yan, X Ren, S Lin, J Li, X Jin, X Shi, P Liu, X WangNature, 2014•nature.com. 511:606–610. https://doi.org/10.1038/nature13544

Kieffer D, research VM-L (2017) Wilson disease: at the crossroads between genetics and epigenetics—a review of the evidence. Elsevier 1:121–130

Google Scholar 

Stättermayer A, Traussnigg S, Dienes H et al (2015) Hepatic steatosis in Wilson disease–Role of copper and PNPLA3 mutations. Elsevier 63:156–163

Google Scholar 

Medici V, Kieffer DA, Shibata NM et al (2016) Wilson disease: epigenetic effects of choline supplementation on phenotype and clinical course in a mouse model. Epigenetics 11:804–818. https://doi.org/10.1080/15592294.2016.1231289

Article  PubMed  PubMed Central  Google Scholar 

Mordaunt CE, Shibata NM, Kieffer DA et al (2018) Epigenetic changes of the thioredoxin system in the tx-j mouse model and in patients with Wilson disease. Hum Mol Genet. https://doi.org/10.1093/hmg/ddy262

Burkhead JL, Gray LW, Lutsenko S (2011) Systems biology approach to Wilson’s disease. BioMetals 24:455–466. https://doi.org/10.1007/S10534-011-9430-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gottlieb A, Devine L, Dev S et al (2021) Steatosis development in the mouse model of Wilson disease coincides with a muted inflammatory response. In: Viszeralmedizin 2021 Gemeinsame Jahrestagung Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Sektion Endoskopie der DGVS, vol 59. Deutsche Gesellschaft für Allgemein und Viszeralchirurgie (DGAV). https://doi.org/10.1055/S-0041-1733630

Chapter  Google Scholar 

Hamilton JP, Koganti L, Muchenditsi A et al (2016) Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B−/− (Wilson disease) mice. Hepatology 63:1828–1841. https://doi.org/10.1002/HEP.28406

Article  CAS  PubMed  Google Scholar 

Huster D, Lutsenko S (2007) Wilson disease: not just a copper disorder. Analysis of a Wilson disease model demonstrates the link between copper and lipid metabolism. Mol Biosyst 3:816. https://doi.org/10.1039/b711118p

Sauer S, Merle U, Opp S et al (2011) Severe dysfunction of respiratory chain and cholesterol metabolism in Atp7b−/− mice as a model for Wilson disease. Elsevier 1812:1607–1615

CAS  Google Scholar 

Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466. https://doi.org/10.1097/COH.0b013e32833ed177

Mohr I, Weiss KH (2019) Biochemical markers for the diagnosis and monitoring of Wilson disease. Clinical Biochemist Reviews 40:59–77. https://doi.org/10.33176/AACB-18-00014

Martins C, Costa,’ Dianne Bald Win DA, Portma B, et al (1992) Value of urinary copper excretion after penicillamine challenge in the diagnosis of Wilson’s disease. Wiley Online Library 15:609–615. https://doi.org/10.1002/hep.1840150410

Takahashi H, McCaffery J, Irizarry R et al (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217. https://doi.org/10.1016/j.molcel.2006.05.040

Article  CAS  PubMed  Google Scholar 

Salminen A, Kauppinen A et al (2014) Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Elsevier, pp 45–65

Google Scholar 

Gu M, Cooper J, Butler P et al (2000) Oxidative-phosphorylation defects in liver of patients with Wilson’s disease. The Lancet 356:469–474. https://doi.org/10.1016/S0140-6736(00)02556-3

Lekomtseva Y, Voloshyn-Gaponov I, Tatayna G (2019) Targeting higher levels of Tau protein in Ukrainian Patients with Wilson’s Disease. Neurol Ther 8:59–68. https://doi.org/10.1007/S40120-019-0134-3

Article  PubMed  PubMed Central  Google Scholar 

Lin J, Zheng Y, Liu Y et al (2021) Higher concentration of plasma glial fibrillary acidic protein in Wilson disease patients with neurological manifestations. Movement Disord 36:1446–1450. https://doi.org/10.1002/mds.28509

Article  CAS  PubMed  Google Scholar 

Shribman S, Heller C, Burrows M (2020) Plasma neurofilament light as a biomarker of neurological involvement in Wilson’s disease. Mov Disord 36:503–508. https://doi.org/10.1002/mds.28333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hefter H, Arslan M, Kruschel TS et al (2022) Pseudocholinesterase as a biomarker for untreated Wilson’s disease. Biomolecules 12:1791. https://doi.org/10.3390/biom12121791

Antos A, Litwin T, Przybyłkowski A et al (2022) Biomarkers of the central nervous system injury in Wilson’s disease. Pharmacotherapy in Psychiatry and Neurol 38:119–139. https://doi.org/10.5114/fpn.2022.123246

van der Ende EL, Meeter LH, Poos JM et al (2019) Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol 18:1103–1111. https://doi.org/10.1016/S1474-4422(19)30354-0

Ziemssen T, Akgun K, Członkowska A et al (2022) Serum neurofilament light chain as a biomarker of brain injury in Wilson’s disease: clinical and neuroradiological correlations. Movement Disorders 37:1074–1079. https://doi.org/10.1002/MDS.28946

Article  CAS  PubMed  Google Scholar 

Czlonkowska A, Litwin T, Karliński M et al (2014) D-penicillamine versus zinc sulfate as first-line therapy for Wilson’s disease. Eur J Neurol 21:599–606. https://doi.org/10.1111/ENE.12348

Article  CAS  PubMed  Google Scholar 

Müller J, Lichtmannegger J et al (2018) High spatial resolution LA-ICP-MS demonstrates massive liver copper depletion in Wilson disease rats upon Methanobactin treatment. Elsevier 49:119–127

Google Scholar 

Dong T, Wu M, Tang L et al (2021) GanDouLing promotes proliferation and differentiation of neural stem cells in the mouse model of Wilson’s disease. Biosci Rep 41. https://doi.org/10.1042/BSR20202717

Chen Y, Zhang B, Cao S, et al (2018) GanDouLing combined with Penicillamine improves cerebrovascular injury via PERK/eIF2α/CHOP endoplasmic reticulum stress pathway in the mouse model of. portlandpress.comY Chen, B Zhang, S Cao, W Huang, N Liu, W YangBioscience Reports, 2018•portlandpress.com 38:

Merle U, Enckea J, Tuma S et al (2006) Lentiviral gene transfer ameliorates disease progression in Long-Evans Cinnamon rats: an animal model for Wilson disease. Scand J Gastroenterol 41:974–982. https://doi.org/10.1080/00365520600554790

Article  CAS  PubMed  Google Scholar 

Leng Y, Li P, Zhou L et al (2019) Long-term correction of copper metabolism in Wilson’s disease mice with AAV8 vector delivering truncated ATP7B. Hum Gene Ther 30:1494–1504. https://doi.org/10.1089/HUM.2019.148

Article  CAS  PubMed  Google Scholar 

Wei R, Yang J, Cheng C et al (2022) CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson’s disease. Elsevier, p 4

Google Scholar 

Park SM, Vo K, Lallier M et al (2006) Hepatocyte transplantation in the Long Evans Cinnamon rat model of Wilson’s disease. Cell Transplant 15:13–22. https://doi.org/10.3727/000000006783982188

Article  CAS  PubMed 

留言 (0)

沒有登入
gif