Deferoxamine Ameliorates Cypermethrin-Induced Iron Accumulation and Associated Alterations

Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V (2023) Advances in understanding of the function of alpha-synuclein: implications for Parkinson’s disease. Brain. 146(9):3587–3597. https://doi.org/10.1093/brain/awad150

Casanova Y, Negro S, Barcia E (2021) Application of neurotoxin- and pesticide-induced animal models of Parkinson’s disease in the evaluation of new drug delivery systems. Acta Pharm 72(1):35–58. https://doi.org/10.2478/acph-2022-0008

Article  CAS  PubMed  Google Scholar 

Faizan M, Sarkar A, Singh MP (2022) Type 2 diabetes mellitus augments Parkinson’s disease risk or the other way around: facts, challenges and future possibilities. Ageing Res Rev 81:101727. https://doi.org/10.1016/j.arr.2022.101727

Article  CAS  PubMed  Google Scholar 

Singh MP, Patel S, Dikshit M, Gupta YK (2006) Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian J Biochem Biophys 43(2):69–81. http://nopr.niscpr.res.in/handle/123456789/3264

Koretsky MJ, Alvarado C, Makarious MB, Vitale D, Levine K, Bandres-Ciga S, Dadu A, Scholz SW et al (2023) Genetic risk factor clustering within and across neurodegenerative diseases. Brain. 146(11):4486–4494. https://doi.org/10.1093/brain/awad161

Aalikhani M, Safdari Y, Jahanshahi M, Alikhani M, Khalili M (2022) Comparison between hesperidin, coumarin, and deferoxamine iron chelation and antioxidant activity against excessive iron in the iron overloaded mice. Front Neurosci 15:811080. https://doi.org/10.3389/fnins.2021.811080

Article  PubMed  PubMed Central  Google Scholar 

Martin-Bastida A, Lao-Kaim NP, Loane C, Politis M, Roussakis AA, Valle-Guzman N, Kefalopoulou Z, Paul-Visse G et al (2017) Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility. Eur J Neurol 24(2):357–365. https://doi.org/10.1111/ene.13208

Article  CAS  PubMed  Google Scholar 

Dashtipour K, Liu M, Kani C, Dalaie P, Obenaus A, Simmons D, Gatto NM, Zarifi M (2015) Iron accumulation is not homogenous among patients with Parkinson’s disease. Parkinsons Dis 324843. https://doi.org/10.1155/2015/324843

Olmedo-Díaz S, Estévez-Silva H, Orädd G, AfBjerkén S, Marcellino D, Virel A (2017) An altered blood-brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson’s disease. Neuroscience 362:141–151. https://doi.org/10.1016/j.neuroscience.2017.08.023

Article  CAS  PubMed  Google Scholar 

Ayton S, Lei P (2014) Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. Biomed Res Int 2014:581256. https://doi.org/10.1155/2014/581256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan W, Jin L, Wang Z, Wang L, Fei G, Ye F, Pan X, Wang C, Zhong C (2017) Iron deposition leads to neuronal α-synuclein pathology by inducing autophagy dysfunction. Front Neurol 8:1. https://doi.org/10.3389/fneur.2017.00001

Article  PubMed  PubMed Central  Google Scholar 

Lee JH, Lee MS (2019) Brain iron accumulation in atypical Parkinsonian syndromes: in vivo mri evidences for distinctive patterns. Front Neurol 10:74. https://doi.org/10.3389/fneur.2019.00074

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Tan L, Tan MS (2023) Chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapy. Mol Cell Biochem.https://doi.org/10.1007/s11010-022-04640-9

Chen X, Yu C, Kang R, Kroemer G, Tang D (2021) Cellular degradation systems in ferroptosis. Cell Death Differ 28(4):1135–1148. https://doi.org/10.1038/s41418-020-00728-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tripathi MK, Rasheed MSU, Mishra AK, Patel DK, Singh MP (2020) Silymarin protects against impaired autophagy associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism. J Mol Neurosci 70(2):276–283. https://doi.org/10.1007/s12031-019-01431-8

Article  CAS  PubMed  Google Scholar 

Xiong Q, Sun H, Xing W, Li X, Chen G, Zhao Z, Wu C, Li P (2023) WDR45 mutation dysregulates iron homeostasis by promoting the chaperone-mediated autophagic degradation of ferritin heavy chain in an ER stress/p38 dependent mechanism. Free Radic Biol Med 201:89–97. https://doi.org/10.1016/j.freeradbiomed.2023.03.012

Article  CAS  PubMed  Google Scholar 

Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33(2):404–415. https://doi.org/10.1016/j.neurobiolaging.2010.02.018

Article  CAS  PubMed  Google Scholar 

Rajput C, Sarkar A, Singh MP (2021) Involvement of peroxiredoxin-3, thioredoxin-2, and protein deglycase-1 in cypermethrin-induced Parkinsonism. Mol Neurobiol 58(9):4745–4757. https://doi.org/10.1007/s12035-021-02456-0

Article  CAS  PubMed  Google Scholar 

Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP (2018) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33(2):377–387. https://doi.org/10.1007/s12640-017-9800-3

Article  CAS  PubMed  Google Scholar 

Tiwari MN, Singh AK, Ahmad I, Upadhyay G, Singh D, Patel DK, Singh C, Prakash O et al (2010) Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic Res 44(12):1416–1424. https://doi.org/10.3109/10715762.2010.512041

Article  CAS  PubMed  Google Scholar 

Sachan N, Tiwari N, Patel DK, Katiyar D, Srikrishna S, Singh MP (2023) Dyshomeostasis of iron and its transporter proteins in cypermethrin-induced Parkinson’s disease. Mol Neurobiol 60(10):5838–5852. https://doi.org/10.1007/s12035-023-03436-2

Article  CAS  PubMed  Google Scholar 

Mursaleen L, Somavarapu S, Zariwala MG (2020) Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. J Parkinsons Dis 10(1):99–111. https://doi.org/10.3233/JPD-191754

Article  CAS  PubMed  Google Scholar 

Bellotti D, Remelli M (2021) Deferoxamine B: a natural, excellent and versatile metal chelator. Molecules 26(11):3255. https://doi.org/10.3390/molecules26113255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fine JM, Kosyakovsky J, Baillargeon AM, Tokarev JV, Cooner JM, Svitak AL, Faltesek KA, Frey WH 2nd et al (2020) Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement. Brain Behav 10(3):e01536. https://doi.org/10.1002/brb3.1536

Article  PubMed  PubMed Central  Google Scholar 

Farr AC, Xiong MP (2021) Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease, Parkinson’s disease, and intracerebral hemorrhage. Mol Pharm 18(2):593–609. https://doi.org/10.1021/acs.molpharmaceut.0c00474

Article  CAS  PubMed  Google Scholar 

Wu Y, Li X, Xie W, Jankovic J, Le W, Pan T (2010) Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem Int 57(3):198–205. https://doi.org/10.1016/j.neuint.2010.05.008

Article  CAS  PubMed  Google Scholar 

Ward RJ, Dexter D, Florence A, Aouad F, Hider R, Jenner P, Crichton RR (1995) Brain iron in the ferrocene-loaded rat: its chelation and influence on dopamine metabolism. Biochem Pharmacol 49(12):1821–1826. https://doi.org/10.1016/0006-2952(94)00521-m

Article  CAS  PubMed  Google Scholar 

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265-275. PMID: 14907713

Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP (2015) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol 51(2):448–465. https://doi.org/10.1007/s12035-014-8696-7

Article  CAS  PubMed  Google Scholar 

Tripathi P, Singh A, Agrawal S, Prakash O, Singh MP (2014) Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to Parkinsonism. J Physiol Biochem 70(4):915–924. https://doi.org/10.1007/s13105-014-0359-7

Article  CAS  PubMed  Google Scholar 

Pan K, Li X, Chen Y, Zhu D, Li Y, Tao G, Zuo Z (2016) Deferoxamine pre-treatment protects against postoperative cognitive dysfunction of aged rats by depressing microglial activation via ameliorating iron accumulation in hippocampus. Neuropharmacology 111:180–194. https://doi.org/10.1016/j.neuropharm.2016.09.004

Article  CAS  PubMed  Google Scholar 

Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564. https://doi.org/10.1038/nrn3453

Article  CAS  PubMed  Google Scholar 

Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm (Vienna) 118(3):301–314. https://doi.org/10.1007/s00702-010-0470-z

Article  CAS  PubMed  Google Scholar 

Lee HP, Zhu X, Liu G, Chen SG, Perry G, Smith MA, Lee HG (2010) Divalent metal transporter, iron, and Parkinson’s disease: a pathological relationship. Cell Res 20(4):397–399. https://doi.org/10.1038/cr.2010.39

Article  CAS  PubMed  Google Scholar 

Rakshit J, Priyam A, Gowrishetty KK, Mishra S, Bandyopadhyay J (2020) Iron chelator deferoxamine protects human neuroblastoma cell line SH-SY5Y from 6-hydroxydopamine-induced apoptosis and autophagy dysfunction. J Trace Elem Med Biol 57:126406. https://doi.org/10.1016/j.jtemb.2019.126406

Article  CAS  PubMed  Google Scholar 

Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML et al (2016) Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 280:13–23.

留言 (0)

沒有登入
gif