Integrative Metabolomics and Whole Transcriptome Sequencing Reveal Role for TREM2 in Metabolism Homeostasis in Alzheimer’s Disease

McC A, Hrb B, Vl C, Jmr D, Hhf E, Ers F, Sa G, Dmh A et al (2013) Can we prevent Alzheimer’s disease? Secondary “prevention” trials in Alzheimer’s disease - ScienceDirect. Alzheimer’s & Dementia 9(2):123–131

Article  Google Scholar 

Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: snapshot of a pervasive metabolic disorder (2016). Biochimica et biophysica acta Molecular basis of disease: BBA 1862(6):1084–1092

Mahajan UV, Varma VR, Griswold ME, Blackshear CT, Thambisetty M (2020) Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: a targeted metabolomic and transcriptomic study. PLoS Med 17(1):e1003012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demetrius LA, Driver J (2013) Alzheimer’s as a metabolic disease. Biogerontology 14(6):641–649

Article  CAS  PubMed  Google Scholar 

de la Monte SM, Tong Ming (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559

Article  PubMed  Google Scholar 

Mosconi L, Murray J, Tsui WH, Li Y, Leon MJD (2014) Brain imaging of cognitively normal individuals with 2 parents affected by late-onset AD. Neurology 82(9):752–760

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Diaz M, Martins IJ, Fonteh AN, Solomon VA (2020) Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front Physiol 11:598

Article  Google Scholar 

Chen J, Yan W, Chen X, Jiao J, Yu Z (2017) Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget 8(5):7301

Article  PubMed  Google Scholar 

Olsen ASB, Færgeman NJ (2017) Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 7(5). https://doi.org/10.1098/rsob.170069

Park MH, Jin HK, Bae JS (2020) Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp Mol Med 52(3):380–389. https://doi.org/10.1038/s12276-020-0399-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Efthymiou AG, Goate AM (2017) Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12(1)

Deczkowska A, Weiner A, Amit I (2020) The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell 181(6):1207–1217. https://doi.org/10.1016/j.cell.2020.05.003

Article  CAS  PubMed  Google Scholar 

McQuade A, Kang YJ, Hasselmann J, Jairaman A, Sotelo A, Coburn M, Shabestari SK, Chadarevian JP et al (2020) Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease. Nat Commun 11(1):5370. https://doi.org/10.1038/s41467-020-19227-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng L, Chen M, Cai K, Song Y, Yu D, Zhang H, Xu G (2019) Microglial Trem2 induces synaptic impairment at early stage and prevents amyloidosis at late stage in APP/PS1 mice. FASEB J 33(9):10425–10442. https://doi.org/10.1096/fj.201900527R

Article  CAS  PubMed  Google Scholar 

Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212(3):287–295. https://doi.org/10.1084/jem.20142322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loving BA, Bruce KD (2020) Lipid and lipoprotein metabolism in microglia. Front Physiol 11:393. https://doi.org/10.3389/fphys.2020.00393

Article  PubMed  PubMed Central  Google Scholar 

Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47(3):566-581.e569. https://doi.org/10.1016/j.immuni.2017.08.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, Wang M, Yu CJ et al (2022) TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener 17(1):40. https://doi.org/10.1186/s13024-022-00542-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Lengerich B, Zhan L, Xia D, Chan D, Joy D, Park JI, Tatarakis D, Calvert M et al (2023) A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat Neurosci 26(3):416–429. https://doi.org/10.1038/s41593-022-01240-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bottero V, Powers D, Yalamanchi A, Quinn JP, Potashkin JA (2021) Key disease mechanisms linked to Alzheimer’s disease in the entorhinal cortex. Int J Mol Sci 22(8). https://doi.org/10.3390/ijms22083915

Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88. https://doi.org/10.3389/fgene.2014.00088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Wu M, Lai Q, Zhou W, Wen X, Yin X (2022) Epigenetic regulation of synaptic disorder in Alzheimer’s disease. Front Neurosci 16:888014. https://doi.org/10.3389/fnins.2022.888014

Article  PubMed  PubMed Central  Google Scholar 

Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 55(6):801–814. https://doi.org/10.1002/ana.20101

Article  CAS  PubMed  Google Scholar 

Cunnane SC, Courchesne-Loyer A, Vandenberghe C, St-Pierre V, Fortier M, Hennebelle M, Croteau E, Bocti C et al (2016) Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of Alzheimer’s disease. Front Mol Neurosci 9:53. https://doi.org/10.3389/fnmol.2016.00053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO (2019) Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics 16(3):600–610. https://doi.org/10.1007/s13311-019-00755-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH et al (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discovery 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x

Article  CAS  PubMed  Google Scholar 

Ulland TK, Song WM, Huang CC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170(4):649–663

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal M, Khan S (2020) Plasma lipids as biomarkers for Alzheimer’s disease: a systematic review. Cureus 12(12):e12008. https://doi.org/10.7759/cureus.12008

Article  PubMed  PubMed Central  Google Scholar 

Hossain MS, Mawatari S, Fujino T (2020) Biological functions of plasmalogens. Adv Exp Med Biol 1299:171–193. https://doi.org/10.1007/978-3-030-60204-8_13

Article  PubMed  Google Scholar 

Kellar D, Craft S (2020) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19(9):758–766. https://doi.org/10.1016/s1474-4422(20)30231-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma VK, Singh TG (2020) Insulin resistance and bioenergetic manifestations: targets and approaches in Alzheimer’s disease. Life Sci 262:118401. https://doi.org/10.1016/j.lfs.2020.118401

Article  CAS  PubMed  Google Scholar 

Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38. https://doi.org/10.1001/archneurol.2011.233

Article  PubMed  Google Scholar 

Beth HM, Junjie X, Amanda T (2015) The TREM2-DAP12 signaling pathway in Nasu-Hakola disease: a molecular genetics perspective. Res Rep Biochem 5:89–100

Google Scholar 

Majumder S, Richardson A, Strong R, Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6(9):e25416. https://doi.org/10.1371/journal.pone.0025416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Q, Chang C, Saliba A, Bhat MA (2022) Microglial mTOR activation upregulates Trem2 and enhances β-amyloid plaque clearance in the 5XFAD Alzheimer’s disease model. J Neurosci 42(27):5294–5313. https://doi.org/10.1523/jneurosci.2427-21.2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469(7331):491–497. https://doi.org/10.1038/nature09667

Article  CAS 

留言 (0)

沒有登入
gif