Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913. https://doi.org/10.1183/13993003.01913-2018.
Article CAS PubMed PubMed Central Google Scholar
Naeije R, Richter MJ, Rubin LJ. The physiological basis of pulmonary arterial hypertension. Eur Respir J. 2022;59(6):2102334. https://doi.org/10.1183/13993003.02334-2021.
Article PubMed PubMed Central Google Scholar
Abid S, Marcos E, Parpaleix A, Amsellem V, Breau M, Houssaini A, Vienney N, Lefevre M, Derumeaux G, Evans S, Hubeau C, Delcroix M, Quarck R, Adnot S, Lipskaia L. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J. 2019;54(4):1802308. https://doi.org/10.1183/13993003.02308-2018.
Article CAS PubMed Google Scholar
Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM, Hansmann G. PPARgamma Links BMP2 and TGFbeta1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism. Cell Metab. 2017;25(5):1118-34 e7. https://doi.org/10.1016/j.cmet.2017.03.011.
Article CAS PubMed Google Scholar
Tan R, You Q, Yu D, Xiao C, Adu-Amankwaah J, Cui J, Zhang T. Novel hub genes associated with pulmonary artery remodeling in pulmonary hypertension. Front Cardiovasc Med. 2022;9: 945854. https://doi.org/10.3389/fcvm.2022.945854.
Article CAS PubMed PubMed Central Google Scholar
Lajoie AC, Lauziere G, Lega JC, Lacasse Y, Martin S, Simard S, Bonnet S, Provencher S. Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med. 2016;4(4):291–305. https://doi.org/10.1016/S2213-2600(16)00027-8.
Article CAS PubMed Google Scholar
van de Veerdonk MC, Kind T, Marcus JT, Mauritz GJ, Heymans MW, Bogaard HJ, Boonstra A, Marques KM, Westerhof N, Vonk-Noordegraaf A. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9. https://doi.org/10.1016/j.jacc.2011.06.068.
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, van der Heiden MG, Cantley LC. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278–83. https://doi.org/10.1126/science.1211485.
Article CAS PubMed PubMed Central Google Scholar
Rees ML, Subramaniam J, Li Y, Hamilton DJ, Frazier OH, Taegtmeyer H. A PKM2 signature in the failing heart. Biochem Biophys Res Commun. 2015;459(3):430–6. https://doi.org/10.1016/j.bbrc.2015.02.122.
Article CAS PubMed PubMed Central Google Scholar
Masaki S, Hashimoto K, Kihara D, Tsuzuki C, Kataoka N, Suzuki K. The cysteine residue at 424th of pyruvate kinase M2 is crucial for tetramerization and responsiveness to oxidative stress. Biochem Biophys Res Commun. 2020;526(4):973–7. https://doi.org/10.1016/j.bbrc.2020.03.182.
Article CAS PubMed Google Scholar
Rajala RVS. Aerobic glycolysis in the retina: functional roles of pyruvate kinase isoforms. Front Cell Dev Biol. 2020;8:266. https://doi.org/10.3389/fcell.2020.00266.
Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol. 2022;237(1):128–48. https://doi.org/10.1002/jcp.30536.
Article CAS PubMed Google Scholar
Irokawa H, Numasaki S, Kato S, Iwai K, Inose-Maruyama A, Ohdate T, Hwang GW, Toyama T, Watanabe T, Kuge S. Comprehensive analyses of the cysteine thiol oxidation of PKM2 reveal the effects of multiple oxidation on cellular oxidative stress response. Biochem J. 2021;478(7):1453–70. https://doi.org/10.1042/BCJ20200897.
Article CAS PubMed Google Scholar
Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018;15(8):457–70. https://doi.org/10.1038/s41569-018-0044-6.
Article CAS PubMed Google Scholar
Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90. https://doi.org/10.1152/ajpheart.00554.2011.
Article CAS PubMed Google Scholar
Magadum A, Singh N, Kurian AA, Munir I, Mehmood T, Brown K, Sharkar MTK, Chepurko E, Sassi Y, Oh JG, Lee P, Santos CXC, Gaziel-Sovran A, Zhang G, Cai CL, Kho C, Mayr M, Shah AM, Hajjar RJ, Zangi L. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation. 2020;141(15):1249–65. https://doi.org/10.1161/CIRCULATIONAHA.119.043067.
Article CAS PubMed PubMed Central Google Scholar
Hauck L, Dadson K, Chauhan S, Grothe D, Billia F. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ. 2021;28(4):1398–417. https://doi.org/10.1038/s41418-020-00669-9.
Article CAS PubMed Google Scholar
Ni L, Lin B, Hu L, Zhang R, Fu F, Shen M, Yang J, Shi D. Pyruvate kinase M2 protects heart from pressure overload-induced heart failure by phosphorylating RAC1. J Am Heart Assoc. 2022;11(11): e024854. https://doi.org/10.1161/JAHA.121.024854.
Article PubMed PubMed Central Google Scholar
Shimauchi T, Boucherat O, Yokokawa T, Grobs Y, Wu W, Orcholski M, Martineau S, Omura J, Tremblay E, Shimauchi K, Nadeau V, Breuils-Bonnet S, Paulin R, Potus F, Provencher S, Bonnet S. PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension. JACC Basic Transl Sci. 2022;7(4):384–403. https://doi.org/10.1016/j.jacbts.2022.01.005.
Article PubMed PubMed Central Google Scholar
Guo L, Qin G, Cao Y, Yang Y, Dai S, Wang L, Wang E. Regulation of the immune microenvironment by an NLRP3 inhibitor contributes to attenuation of acute right ventricular failure in rats with pulmonary arterial hypertension. J Inflamm Res. 2021;14:5699–711. https://doi.org/10.2147/JIR.S336964.
Article CAS PubMed Google Scholar
Tian S, Zhan D, Yu Y, Wang Y, Liu M, Tan S, Li Y, Song L, Qin Z, Li X, Liu Y, Li Y, Ji S, Wang S, Proteomic Massive Analysis and Quality Control Consortium, Zheng Y, He F, Qin J, Ding C. Quartet protein reference materials and datasets for multi-platform assessment of label-free proteomics. Genome Biol. 2023;24(1):202. https://doi.org/10.1186/s13059-023-03048-y.
Article CAS PubMed PubMed Central Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Methodol. 2018;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, Pfenninger A, Liew CW, Qiang G, Burkart AM, Hastings S, Pober D, Cahill C, Niewczas MA, Israelsen WJ, Tinsley L, Stillman IE, Amenta PS, Feener EP, van der Heiden MG, Stanton RC, King GL. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23(6):753–62. https://doi.org/10.1038/nm.4328.
Article CAS PubMed PubMed Central Google Scholar
Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X, Xiao T, Huang H, Chen S, Ning W, Yang G, Yang C, Zhou H. PKM2 promotes pulmonary fibrosis by stabilizing TGF-beta1 receptor I and enhancing TGF-beta1 signaling. Sci Adv. 2022;8(38):eabo0987. https://doi.org/10.1126/sciadv.abo0987.
Article CAS PubMed Central Google Scholar
Hsu CC, Zhang X, Wang G, Zhang W, Cai Z, Pan BS, Gu H, Xu C, Jin G, Xu X, Manne RK, Jin Y, Yan W, Shao J, Chen T, Lin E, Ketkar A, Eoff R, Xu ZG, Chen ZZ, Li HY, Lin HK. Inositol serves as a natural inhibitor of mitochondrial fission by directly targeting AMPK. Mol Cell. 2021;81(18):3803-19 e7. https://doi.org/10.1016/j.molcel.2021.08.025.
Article CAS PubMed PubMed Central Google Scholar
Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284(20):13843–55. https://doi.org/10.1074/jbc.M808515200.
Article CAS PubMed PubMed Central Google Scholar
Legland D, Arganda-Carreras I, Andrey P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics. 2016;32(22):3532–4. https://doi.org/10.1093/bioinformatics/btw413.
Article CAS PubMed Google Scholar
Gao H, Cheng Y, Zong L, Huang L, Qiao C, Li W, Gong B, Hu J, Liu H, Wang X, Zhao C. Aspirin attenuates monocrotaline-induced pulmonary arterial hypertension in rats by suppressing the ERK/MAPK pathway. Clin Exp Hypertens. 2017;39(1):34–41. https://doi.org/10.1080/10641963.2016.1210620.
Article CAS PubMed Google Scholar
Li Q, Wang J, Zhu X, Zeng Z, Wu X, Xu Y, Xie J, Yu J. Dihydromyricetin prevents monocrotaline-induced pulmonary arterial hypertension in rats. Biomed Pharmacother. 2017;96:825–33. https://doi.org/10.1016/j.biopha.2017.10.007.
Article CAS PubMed Google Scholar
Carls
Comments (0)