Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2022;17(3):362–87.
Swarts DRA, Scarpa A, Corbo V, Van Criekinge W, van Engeland M, Gatti G, et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab. 2014;99(2):E374-378.
Article CAS PubMed Google Scholar
Simbolo M, Mafficini A, Sikora KO, Fassan M, Barbi S, Corbo V, et al. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol. 2017;241(4):488–500.
Article CAS PubMed Google Scholar
Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretić L, Seidal D, et al. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids. Nat Commun. 2014;27(5):3518.
Swarts DRA, Van Neste L, Henfling MER, Eijkenboom I, Eijk PP, van Velthuysen ML, et al. An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis. 2013;34(12):2726–37.
Article CAS PubMed Google Scholar
Swarts DRA, Henfling MER, Van Neste L, van Suylen RJ, Dingemans AMC, Dinjens WNM, et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(8):2197–207.
Papaxoinis G, Nonaka D, O’Brien C, Sanderson B, Krysiak P, Mansoor W. Prognostic significance of CD44 and Orthopedia Homeobox Protein (OTP) expression in pulmonary carcinoid tumours. Endocr Pathol. 2017;28(1):60–70.
Article CAS PubMed Google Scholar
Alcala N, Leblay N, Gabriel AA, Mangiante L, Hervás D, Giffon T, et al. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun. 2019;10(1):3407.
Article CAS PubMed PubMed Central Google Scholar
Derks JL, Rijnsburger N, Hermans BCM, Moonen L, Hillen LM, von der Thüsen JH, et al. Clinical-pathologic challenges in the classification of pulmonary neuroendocrine neoplasms and targets on the horizon for future clinical practice. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2021;16(10):1632–46.
Simbolo M, Barbi S, Fassan M, Mafficini A, Ali G, Vicentini C, et al. Gene expression profiling of lung atypical carcinoids and large cell neuroendocrine carcinomas identifies three transcriptomic subtypes with specific genomic alterations. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2019;14(9):1651–61.
Pelosi G. The natural history in lung neuroendocrine neoplasms: the stone guest who matters. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2022;17(2):e5-8.
Derks JL, Dingemans AMC, Speel EJM. Molecular knowledge and clinical relevance - stepping stones in improving classification of lung neuroendocrine neoplasms. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2022;17(2):e8-10.
Fernandez-Cuesta L, Foll M. Molecular studies of lung neuroendocrine neoplasms uncover new concepts and entities. Transl Lung Cancer Res. 2019;8(Suppl 4):S430–4.
Article PubMed PubMed Central Google Scholar
Yan C, Wan R, Shi Y. Molecular mechanisms of pre-mrna splicing through structural biology of the spliceosome. Cold Spring Harb Perspect Biol. 2019;11(1):a032409.
Article CAS PubMed PubMed Central Google Scholar
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 2013;4(1):61–76.
Article CAS PubMed Google Scholar
Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol. 2020;17(8):457–74.
Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23(3):135–55.
Article CAS PubMed PubMed Central Google Scholar
Xu X, Honda K, Miura N, Hori S, Le Blanc S, Bergmann F, et al. Actinin-4 splice variant - a complementary diagnostic and prognostic marker of pancreatic neuroendocrine neoplasms. J Cancer. 2020;11(8):2318–28.
Article CAS PubMed PubMed Central Google Scholar
Alam SK, Wang L, Ren Y, Hernandez CE, Kosari F, Roden AC, et al. ASCL1-regulated DARPP-32 and t-DARPP stimulate small cell lung cancer growth and neuroendocrine tumour cell proliferation. Br J Cancer. 2020;123(5):819–32.
Article CAS PubMed PubMed Central Google Scholar
Pedraza-Arevalo S, Alors-Pérez E, Blázquez-Encinas R, Herrera-Martínez AD, Jiménez-Vacas JM, Fuentes-Fayos AC, et al. Spliceosomic dysregulation unveils NOVA1 as a candidate actionable therapeutic target in pancreatic neuroendocrine tumors. Transl Res J Lab Clin Med. 2022;S1931–5244(22):00170.
Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Gracia-Navarro F, Alors-Pérez E, Pedraza-Arevalo S, et al. The uprise of RNA biology in neuroendocrine neoplasms: altered splicing and RNA species unveil translational opportunities. Rev Endocr Metab Disord. 2022;24:1–16.
Alors-Perez E, Blázquez-Encinas R, Alcalá S, Viyuela-García C, Pedraza-Arevalo S, Herrero-Aguayo V, et al. Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug. J Exp Clin Cancer Res CR. 2021;40(1):382.
Article CAS PubMed Google Scholar
Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E, Fuentes-Fayos AC, León-González AJ, et al. Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer. EBioMedicine. 2020;51:102547.
Article PubMed PubMed Central Google Scholar
Vázquez-Borrego MC, Fuentes-Fayos AC, Venegas-Moreno E, Rivero-Cortés E, Dios E, Moreno-Moreno P, et al. Splicing machinery is dysregulated in pituitary neuroendocrine tumors and is associated with aggressiveness features. Cancers. 2019;11(10):E1439.
Fuentes-Fayos AC, Vázquez-Borrego MC, Jiménez-Vacas JM, Bejarano L, Pedraza-Arévalo S, L-López F, et al. Splicing machinery dysregulation drives glioblastoma development/ aggressiveness: oncogenic role of SRSF3. Brain J Neurol. 2020;143(11):3273–93.
Uphoff CC, Drexler HG. Detection of mycoplasma contaminations. Methods Mol Biol Clifton NJ. 2013;946:1–13.
Del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, et al. Dysregulation of the splicing machinery is associated to the development of nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2019;104(8):3389–402.
Article PubMed PubMed Central Google Scholar
Ibáñez-Costa A, Perez-Sanchez C, Patiño-Trives AM, Luque-Tevar M, Font P, Arias de la Rosa I, et al. Splicing machinery is impaired in rheumatoid arthritis, associated with disease activity and modulated by anti-TNF therapy. Ann Rheum Dis. 2022;81(1):56–67.
Del Río-Moreno M, Luque RM, Rangel-Zúñiga OA, Alors-Pérez E, Alcalá-Diaz JF, Roncero-Ramos I, et al. Dietary intervention modulates the expression of splicing machinery in cardiovascular patients at high risk of type 2 diabetes development: from the CORDIOPREV study. Nutrients. 2020;12(11):3528.
Article PubMed PubMed Central Google Scholar
Jiménez-Vacas JM, Herrero-Aguayo V, Gómez-Gómez E, León-González AJ, Sáez-Martínez P, Alors-Pérez E, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res J Lab Clin Med. 2019;212:89–103.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.
Article PubMed PubMed Central Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
Article CAS PubMed Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.
Article CAS PubMed PubMed Central Google Scholar
Love MI, Soneson C, Hickey PF, Johnson LK, Pierce NT, Shepherd L, et al. Tximeta: Reference sequence checksums for provenance identification in RNA-seq. PLoS Comput Biol. 2020;16(2): e1007664.
Article CAS PubMed PubMed Central Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article PubMed PubMed Central Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
Article CAS PubMed PubMed Central Google Scholar
Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 2018;19(1):40.
Article PubMed PubMed Central Google Scholar
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkab382.
Comments (0)