DSPE-PEG2000-methotrexate nanoparticles encapsulating phenobarbital sodium kill cancer cells by inducing pyroptosis

Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol Biomark Prev 25:16–27. https://doi.org/10.1158/1055-9965.Epi-15-0578

Article  Google Scholar 

Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P et al (2022) Early detection of cancer. Science 375:eaay9040. https://doi.org/10.1126/science.aay9040. Published online EpubMar 18

Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, Kawachi I, Campbell PT, Giovannucci EL, Weiderpass E et al (2022) Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 19:656–673. https://doi.org/10.1038/s41571-022-00672-8. Published online EpubOct

Reddy SM, Reuben A, Barua S, Jiang H, Zhang S, Wang L, Gopalakrishnan V, Hudgens CW, Tetzlaff MT, Reuben JM et al (2019) Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer. Cancer Immunol Res 7:1025–1035. https://doi.org/10.1158/2326-6066.CIR-18-0619. Published online EpubJun

Yan Y, Feng X, Li C, Lerut T, Li H (2022) Treatments for resectable esophageal cancer: from traditional systemic therapy to immunotherapy. Chin Med J (Engl) 135:2143–2156. https://doi.org/10.1097/cm9.0000000000002371. Published online EpubSep 20

Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S (2019) Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13:246–254. https://doi.org/10.2174/1872211314666191224115211

Ren WW, Xu SH, Sun LP, Zhang K (2022) Ultrasound-Based Drug Delivery System. Curr Med Chem 29:1342–1351. https://doi.org/10.2174/0929867328666210617103905. Published online EpubMar 4

Zhang S, Sun J (2022) Nano-drug delivery system for the treatment of acute myelogenous leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban 51:233–240. https://doi.org/10.3724/zdxbyxb-2022-0084. Published online EpubApr 25

Shueng PW, Yu LY, Hou HH, Chiu HC, Lo CL (2022) Charge conversion polymer-liposome complexes to overcome the limitations of cationic liposomes in mitochondrial-targeting drug delivery. Int J Mol Sci 23. https://doi.org/10.3390/ijms23063080. Published online EpubMar ARTN 3080

Sriwidodo A, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA (2022) Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 8:e08934. https://doi.org/10.1016/j.heliyon.2022.e08934. Published online EpubFeb

Hanafy NAN, Sheashaa RF, Moussa EA, Mahfouz ME (2023) Potential of curcumin and niacin-loaded targeted chitosan coated liposomes to activate autophagy in hepatocellular carcinoma cells: An in vitro evaluation in HePG2 cell line. International journal of biological macromolecules 245:125572. https://doi.org/10.1016/j.ijbiomac.2023.125572. Published online EpubAug 1

Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, Szebeni J, Ishida T (2019) PEGylated liposomes: immunological responses. Science and Technology of Advanced Materials 20:710–724. https://doi.org/10.1080/14686996.2019.1627174

Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. https://doi.org/10.1016/j.addr.2012.09.037. Published online EpubJan

Krivić H, Himbert S, Rheinstädter MC (2022) Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases. Membranes (Basel) 12. https://doi.org/10.3390/membranes12121226. Published online EpubDec 3

Oğuzhan Kaya H, Karpuz M, Nur Topkaya S (2022) Electrochemical Analysis of Liposome‐encapsulated Colistimethate Sodium. Electroanalysis 34:1114–1120. https://doi.org/10.1002/elan.202100570

Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W (2022) Liposomes: structure, composition, types, and clinical applications. Heliyon 8:e09394. https://doi.org/10.1016/j.heliyon.2022.e09394. Published online EpubMay

Shaw TK, Paul P (2022) Recent Approaches and Success of Liposome-Based Nano Drug Carriers for the Treatment of Brain Tumor. Curr Drug Deliv 19:815–829. https://doi.org/10.2174/1567201818666211213102308

Article  CAS  PubMed  Google Scholar 

Kesharwani P, Kumari K, Gururani R, Jain S, Sharma S (2022) Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer’s, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System. Curr Drug Metab 23:678–692. https://doi.org/10.2174/1389200223666220609141459

Article  CAS  PubMed  Google Scholar 

Zhang S, Contini C, Hindley JW, Bolognesi G, Elani Y, Ces O (2021) Engineering motile aqueous phase-separated droplets via liposome stabilisation. Nat Commun 12:1673. https://doi.org/10.1038/s41467-021-21832-x. Published online EpubMar 15

Maeda H, Matsumura Y (1989) Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit Rev Ther Drug 6:193–210

CAS  Google Scholar 

Lerman-Sagie T, Lerman P (1999) Phenobarbital still has a role in epilepsy treatment. J Child Neurol 14:820–821. https://doi.org/10.1177/088307389901401210. Published online EpubDec

Li J, Yang D, Zhao D, Li N, Lin W (2019) Efficacy of phenobarbital and sodium valproate in treating convulsive epilepsy in rural northeast China. Seizure 71:207–213. https://doi.org/10.1016/j.seizure.2019.06.012. Published online EpubOct

Yasiry Z, Shorvon SD (2012) How phenobarbital revolutionized epilepsy therapy: The story of phenobarbital therapy in epilepsy in the last 100 years. Epilepsia 53:26–39. https://doi.org/10.1111/epi.12026.  Published online EpubDec

Peraino C, Staffeldt EF, Haugen DA, Lombard LS, Stevens FJ, Fry RM (1980) Effects of Varying the Dietary Concentration of Phenobarbital on Its Enhan- cement of 2- Acetylaminofluorene-induced Hepatic Tumorigenesis1. Cancer Res 40:3268–3273

Hino O, Kitagawa T, Nomura K, Sugano H (1984) Dose-response studies on promoting and anticarcino-genic effects of phenobarb-ital and DDT in the rat hepatocarcinogene-sis. Carcinogenesis 5:1653–1656

Olsen JH, Wallin H, Boice JD Jr, Rask K, Schulgen G, Fraumeni JF Jr (1993) Phenobarbital, drug metabolism, and human cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2:449–452. Published online EpubSep-Oct

Pereira MA, Klaunig JE, Freund SLH, Ruch RJ (1986) Effect of Phenobarbital on the Development of Liver Tumors in Juvenile and Adult Mice JNCI 77

Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693. https://doi.org/10.1016/s0169-409x(02)00042-x. Published online EpubSep 13

Cavallaro G, Licciardi M, Salmaso S, Caliceti P, Gaetano G (2006) Folate-mediated targeting of polymeric conjugates of gemcitabine. Int J Pharm 307:258–269. https://doi.org/10.1016/j.ijpharm.2005.10.015. Published online EpubJan 13

Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53:39–48. https://doi.org/10.1016/s0168-3659(97)00236-8. Published online EpubApr 30

Moharil P, Wan Z, Pardeshi A, Li J, Huang H, Luo Z, Rathod S, Zhang Z, Chen Y, Zhang B et al (2022) Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B 12:1148–1162. https://doi.org/10.1016/j.apsb.2021.09.024. Published online EpubMar

Suriamoorthy P, Zhang X, Hao G, Joly AG, Singh S, Hossu M, Sun X, Chen W (2010) Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting. Cancer Nanotechnol 1:19–28. https://doi.org/10.1007/s12645-010-0003-3

Akhtar A, Ghali L, Wang SX, Bell C, Li D, Wen X (2019) Optimisation of Folate-Mediated Liposomal Encapsulated Arsenic Trioxide for Treating HPV-Positive Cervical Cancer Cells In Vitro. Int J Mol Sci 20. https://doi.org/10.3390/ijms20092156. Published online EpubApr 30

Chatterji DC, Gallelli JF (1978) Thermal and photolytic decomposition of methotrexate in aqueous solutions. J Pharm Sci 67:526–531. https://doi.org/10.1002/jps.2600670422. Published online EpubApr

Grim J, Chládek J, Martínková J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42:139–151. https://doi.org/10.2165/00003088-200342020-00003

Bleyer WA (1978) The clinical pharmacology of methotrexate: new applications of an old drug. Cancer 41:36–51. https://doi.org/10.1002/1097-0142(197801)41:1<36::aid-cncr2820410108>3.0.co;2-i. Published online EpubJan

Pfister C, Gravis G, Fléchon A, Chevreau C, Mahammedi H, Laguerre B, Guillot A, Joly F, Soulié M, Allory Y et al (2022) Dose-Dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin or Gemcitabine and Cisplatin as Perioperative Chemotherapy for Patients With Nonmetastatic Muscle-Invasive Bladder Cancer: Results of the GETUG-AFU V05 VESPER Trial. J Clin Oncol 40:2013–2022. https://doi.org/10.1200/jco.21.02051. Published online EpubJun 20

Corley C, Allen AR (2021) A Bibliometric Analysis of Cyclophosphamide, Methotrexate, and Fluorouracil Breast Cancer Treatments: Implication for the Role of Inflammation in Cognitive Dysfunction. Front Mol Biosci 8:683389. https://doi.org/10.3389/fmolb.2021.683389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misra R, Upadhyay M, Perumal V, Mohanty S (2015) In vitro control release, cytotoxicity assessment and cellular uptake of methotrexate loaded liquid-crystalline folate nanocarrier. Biomed Pharmacother 69:102–110. https://doi.org/10.1016/j.biopha.2014.11.012. Published online EpubFeb

Scaranti M, Cojocaru E, Banerjee S, Banerji U (2020) Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 17:349–359. https://doi.org/10.1038/s41571-020-0339-5. Published online EpubJun

Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L (2022) Role of pyroptosis in inflammation and cancer. Cellular & molecular immunology 19:971–992. https://doi.org/10.1038/s41423-022-00905-x. Published online EpubSep

Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nature reviews. Immunology 13:397–411. https://doi.org/10.1038/nri3452. Published online EpubJun

Akbal A, Dernst A, Lovotti M, Mangan MSJ, McManus RM, Latz E (2022) How location and cellular signaling combine to activate the NLRP3 inflammasome. Cellular & molecular immunology 19:1201–1214. https://doi.org/10.1038/s41423-022-00922-w. Published online EpubNov

Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579:415–420. https://doi.org/10.1038/s41586-020-2071-9. Published online EpubMar

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103. https://doi.org/10.1038/nature22393. Published online EpubJul 6

Wang QY, Wang YP, Ding JJ, Wang CH, Zhou XH, Gao WQ, Huang HW, Shao F, Liu ZB (2020) A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579:421. https://doi.org/10.1038/s41586-020-2079-1. Published online EpubMar

Mikawa K, Akamatsu H, Nishina K, Shiga M, Obara H, Niwa Y (2001) Inhibitory Effects of Pentobarbital and Phenobarbital on Human Neutrophil Functions. J Intensive Care Med 16:79–87. https://doi.org/10.1177/088506660101600203

Article  Google Scholar 

Siwowska K, Schmid RM, Cohrs S, Schibli R, Muller C (2017) Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals 10. https://doi.org/10.3390/ph10030072. Published online EpubAug 15

Xia L, Gu W, Zhang M, Chang YN, Chen K, Bai X, Yu L, Li J, Li S, Xing G (2016) Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation. Particle and Fibre Toxicology 13:63. https://doi.org/10.1186/s12989-016-0173-1. Published online EpubNov 29

Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T (2010) Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem 285:667–674. https://doi.org/10.1074/jbc.M109.053058. Published online EpubJan 1

Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A (2021) Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 338:224–243. https://doi.org/10.1016/j.jconrel.2021.08.027. Published online EpubOct 10

Liu Z, Li Y, Zhu Y, Li N, Li W, Shang C, Song G, Li S, Cong J, Li T et al (2022) Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway. Int J Biol Sci 18:717–730. https://doi.org/10.7150/ijbs.64350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang M, Qi L, Li L, Li Y (2020) The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov 6:112. https://doi.org/10.1038/s41420-020-00349-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian W, Wang Z, Tang NN, Li JT, Liu Y, Chu Wf, Yang BF (2020) Ascorbic Acid Sensitizes Colorectal Carcinoma to the Cytotoxicity of Arsenic Trioxide via Promoting Reactive Oxygen Species-Dependent Apoptosis and Pyroptosis. Front Pharmacol 11. Published online EpubFeb 21

Wang JL, Zhan LH, Cai Z, Liu XM, Wang JS, Zhong HR, Huang XW, Lai QX, Tan QZ, Xiu YB et al (2020) Arsenic trioxide induces gasdermin E mediated pyroptosis in astroglioma cells. Transl Cancer Res 9:1926–1930. https://doi.org/10.21037/tcr.2020.02.17. Published online EpubMar

Yang D, Liang Y, Zhao S, Ding Y, Zhuang Q, Shi Q, Ai T, Wu SQ, Han J (2020) ZBP1 mediates interferon-induced necroptosis. Cellular & molecular immunology 17:356–368. https://doi.org/10.1038/s41423-019-0237-x. Published online EpubApr

Wang J, Yang D, Shen X, Wang J, Liu X, Lin J, Zhong J, Zhao Y, Qi Z (2020) BPTES inhibits anthrax lethal toxin-induced inflammatory response. Int Immunopharmacol 85:106664. https://doi.org/10.1016/j.intimp.2020.106664. Published online EpubAug

Deng B, Yang D, Wu H, Wang L, Wu R, Zhu H, Huang A, Song J, Cai T, Liu S et al (2022) Ketamine inhibits TNF-alpha-induced cecal damage by enhancing RIP1 ubiquitination to attenuate lethal SIRS. Cell Death Discovery 8:72. https://doi.org/10.1038/s41420-022-00869-x. Published online EpubFeb 19

Wang J, Peng X, Yang D, Guo M, Xu X, Yin F, Wang Y, Huang J, Zhan L, Qi Z (2022) Bcl-2 hijacks the arsenic trioxide resistance in SH-SaY5Y cells. J Cell Mol Med 26:563–569. https://doi.org/10.1111/jcmm.17128. Published online EpubJan

留言 (0)

沒有登入
gif