Optimisation of the air fraction correction for lung PET/CT: addressing resolution mismatch

Vass L, Fisk M, Lee S, Wilson FJ, Cheriyan J, Wilkinson I. Advances in PET to assess pulmonary inflammation: a systematic review. Amsterdam: Elsevier; 2020. https://doi.org/10.1016/j.ejrad.2020.109182.

Book  Google Scholar 

Lambrou T, Groves AM, Erlandsson K, Screaton N, Endozo R, Win T, Porter JC, Hutton BF. The importance of correction for tissue fraction effects in lung PET: preliminary findings. Eur J Nucl Med Mol Imaging. 2011;38(12):2238–46.

Article  PubMed  Google Scholar 

Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125–32. https://doi.org/10.1164/rccm.201201-0051OC.

Article  PubMed  Google Scholar 

Torigian DA, Dam V, Chen X, Saboury B, Udupa JK, Rashid A, Moghadam-Kia S, Alavi A. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected18F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16(1):12–8. https://doi.org/10.1967/s0024499100066.

Article  PubMed  Google Scholar 

Groves AM, Win T, Screaton NJ, Berovic M, Endozo R, Booth H, Kayani I, Menezes LJ, Dickson JC, Ell PJ. Idiopathic pulmonary fibrosis and diffuse parenchymal lung disease: implications from initial experience with 18F-FDG PET/CT. J Nucl Med. 2009;50(4):538–45.

Article  PubMed  Google Scholar 

Holman BF, Cuplov V, Millner L, Hutton BF, Maher TM, Groves AM, Thielemans K. Improved correction for the tissue fraction effect in lung PET/CT imaging. Phys Med Biol. 2015;60(18):7387–402. https://doi.org/10.1088/0031-9155/60/18/7387.

Article  PubMed  CAS  Google Scholar 

Win T, Lambrou T, Hutton BF, Kayani I, Screaton NJ, Porter JC, Maher TM, Endozo R, Shortman RI, Lukey P, Groves AM. 18F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials. Eur J Nucl Med Mol Imaging. 2012;39(3):521–8. https://doi.org/10.1007/s00259-011-1986-7.

Article  PubMed  Google Scholar 

Win T, Thomas BA, Lambrou T, Hutton BF, Screaton NJ, Porter JC, Maher TM, Endozo R, Shortman RI, Afaq A, Lukey P, Ell PJ, Groves AM. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients. Eur J Nucl Med Mol Imaging. 2014;41(2):337–42.

Article  PubMed  Google Scholar 

Coello C, Fisk M, Mohan D, Wilson FJ, Brown AP, Polkey MI, Wilkinson I, Tal-Singer R, Murphy PS, Cheriyan J, Gunn RN. Quantitative analysis of dynamic 18 F-FDG PET/CT for measurement of lung inflammation. EJNMMI Res. 2017. https://doi.org/10.1186/s13550-017-0291-2.

Article  PubMed  PubMed Central  Google Scholar 

Eibschutz LS, Rabiee B, Asadollahi S, Gupta A, Assadi M, Alavi A, Gholamrezanezhad A. FDG-PET/CT of COVID-19 and other lung infections. Semin Nucl Med. 2022;52(1):61–70.

Article  PubMed  Google Scholar 

Pinot F, Bourhis D, Bourbonne V, Floch RMM, Blanc-Béguin F, Schick U, Hamya M, Abgral R, Le Gal G, Salaün P-Y, Lucia F, Le Roux P-Y. New automated method for lung functional volumes delineation with lung perfusion PET/CT imaging. Cancers. 2023;15:96. https://doi.org/10.3390/cancers15072166.

Article  CAS  Google Scholar 

Rosenkrans ZT, Massey CF, Bernau K, Ferreira CA, Jeffery JJ, Schulte JJ, Moore M, Valla F, Batterton JM, Drake CR, McMillan AB, Sandbo N, Pirasteh A, Hernandez R. [68Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity. Eur J Nucl Med Mol Imaging. 2022;49:3705–16. https://doi.org/10.1007/s00259-022-05814-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, Fisk M, Groves AM, Gunn RN, Holman BF, Hutton BF, Lee S, MacNee W, Mohan D, Parr D, Subramanian D, Tal-Singer R, Thielemans K, Van Beek EJR, Vass L, Wellen JW, Wilkinson I, Wilson FJ. Quantification of lung PET images: challenges and opportunities. J Nucl Med. 2017;58(2):201–7. https://doi.org/10.2967/jnumed.116.184796.

Article  PubMed  PubMed Central  Google Scholar 

Holman BF, Cuplov V, Bertolli O, Groves AM, Hutton BF, Thielemans K. Density variation during respiration affects PET quantitation in the lung. In: 2015 IEEE nuclear science symposium and medical imaging conference, NSS/MIC 2015, 2016;1–3 . https://doi.org/10.1109/NSSMIC.2015.7582029

Cuplov V, Holman BF, McClelland J, Modat M, Hutton BF, Thielemans K. Issues in quantification of registered respiratory gated PET/CT in the lung. Phys Med Biol. 2018. https://doi.org/10.1088/1361-6560/aa950b.

Article  Google Scholar 

Leek F, Robinson AP, Moss RM, Wilson FJ, Hutton BF, Thielemans K. Air fraction correction optimisation in pet imaging of lung disease. In: 2020 IEEE nuclear science symposium and medical imaging conference (NSS/MIC), 2020;1–4 . https://doi.org/10.1109/NSS/MIC42677.2020.9507896

NEMA: NEMA Standards Publication NU 2-2007 Performance Measurements of Positron Emission Tomographs. National Electrical Manufactuers Association, 2007;33

Liowt J-S, Strother SC. The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Phys Med Biol. 1993;38:55–70.

Article  Google Scholar 

Stamos JA, Rogers WL, Clinthrne NH, Koral KF. Object-dependent performance comparison of two iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1988;35(1):611–4.

Article  CAS  Google Scholar 

Yang Y, Tai Y-C, Siegel S, Newport DF, Bai B, Li Q, Cherry SR. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol. 2004;2527–2545:49.

Google Scholar 

Gong K, Cherry SR, Qi J. On the assessment of spatial resolution of PET systems with iterative image reconstruction. Phys Med Biol. 2016;61(5):193–202.

Article  Google Scholar 

Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. Neuroimage. 2009;46:154–9.

Article  PubMed  Google Scholar 

Burger C, Goerres G, Schoenes S, Buck A, Lonn A, Von Schulthess G. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med. 2002;29(7):922–7.

Article  CAS  Google Scholar 

Carney JPJ, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33(4):976–83.

Article  PubMed  Google Scholar 

Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37(9):4902–15.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N, Jacobson MW. STIR: software for tomographic image reconstruction release 2. Phys Med Biol. 2012;57(4):867–83.

Article  PubMed  Google Scholar 

Ovtchinnikov E, Brown R, Kolbitsch C, Pasca E, da Costa-Luis C, Gillman AG, Thomas BA, Efthimiou N, Mayer J, Wadhwa P, Ehrhardt MJ, Ellis S, Jørgensen JS, Matthews J, Prieto C, Reader AJ, Tsoumpas C, Turner M, Atkinson D, Thielemans K. SIRF: synergistic image reconstruction framework. Comput Phys Commun. 2020;249:39–41.

Article  Google Scholar 

Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PETCT discovery-690. Med Phys. 2011;38(10):5394–411.

Article  PubMed  CAS  Google Scholar 

DataSpectrum: Elliptical Lung-Spine Body Phantom Lid Insert\(^}\) (2020). https://www.spect.com/wp-content/uploads/2020/04/Elliptical-Lung-Spine-Phantom-Lid-Insert.pdf Accessed 19 Aug 2023.

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.

Article  PubMed  Google Scholar 

Kaalep A, Sera T, Oyen W, Krause BJ, Chiti A, Liu Y, Boellaard R. EANM/EARL FDG-PET/CT accreditation—summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging. 2018;45(3):412–22.

Article  PubMed  CAS  Google Scholar 

Wilson DW, Tsui BMW, Barrett HH. Noise properties of the EM algorithm. I. Theory. Phys Med Biol. 1994;39(5):833–46.

Article  PubMed  Google Scholar 

Surti S, Karp J, Popescu L, Daube-Witherspoon M, Werner M. Investigation of time-of-flight benefit for fully 3-d pet. IEEE Trans Med Imaging. 2006;25:529–38.

Article  PubMed  Google Scholar 

Emond EC, Bousse A, Machado M, Porter J, Groves AM, Hutton BF, Thielemans K. Effect of attenuation mismatches in time of flight PET reconstruction. Phys Med Biol. 2020. https://doi.org/10.1088/1361-6560/ab7a6f.

Article  PubMed  Google Scholar 

Schramm G. PARALLELPROJ—an open-source framework for fast calculation of projections in tomography. Frontiers. 2023 (in press). arXiv:2212.12519

Gear JI, Cox MG, Gustafsson J, Gleisner Sjögreen K, Murray I, Glatting G, Konijnenberg M, Flux GD. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45:2456–74.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Avants B, Tustison NJ, Song G. Advanced normalization tools: V1.0. Insight J. 2022;2:1–35.

Google Scholar 

Karunanithi S, Soundararajan R, Sharma P, Naswa N, Bal C, Kumar R. Spectrum of physiologic and pathologic skeletal muscle 18F-FDG uptake on PET/CT. Am J Roentgenol. 2015. https://doi.org/10.2214/AJR.14.13457.

Article  Google Scholar 

Modat M, Ridgway G, Taylor Z, Lehmann M, Barnes J, Hawkes D, Fox N, Ourselin S. Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed. 2010;98:278–84.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif