Molecularly imprinted dispersive micro solid-phase extraction and tandem derivatization for the determination of histamine in fermented wines

Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends Anal Chem. 2018;98:128–42. https://doi.org/10.1016/j.trac.2017.11.001.

Article  CAS  Google Scholar 

de la Torre CAL, Conte-Junior CA. Detection of biogenic amines: quality and toxicity indicators in food of animal origin. In: Holban AM, Grumezescu AM (eds) Food control and biosecurity. Academic Press; 2018. pp. 225–257. https://doi.org/10.1016/B978-0-12-811445-2.00006-4.

Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem. 2020;314: 126222. https://doi.org/10.1016/j.foodchem.2020.126222.

Article  CAS  PubMed  Google Scholar 

Gao X, Li C, He R, Zhang Y, Wang B, Zhang Z-H, Ho C-T. Research advances on biogenic amines in traditional fermented foods: emphasis on formation mechanism, detection and control methods. Food Chem. 2023;405: 134911. https://doi.org/10.1016/j.foodchem.2022.134911.

Article  CAS  Google Scholar 

Vasconcelos H, de Almeida JMMM, Matias A, Saraiva C, Jorge PAS, Coelho LCC. Detection of biogenic amines in several foods with different sample treatments: an overview. Trends Food Sci Technol. 2021;113:86–96. https://doi.org/10.1016/j.tifs.2021.04.043.

Article  CAS  Google Scholar 

Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, Bashammakh AS, O’Sullivan CK, El-Shahawi MS. Biogenic amines formation mechanism and determination strategies: future challenges and limitations. Crit Rev Anal Chem. 2020;50(6):485–500. https://doi.org/10.1080/10408347.2019.1657793.

Article  CAS  PubMed  Google Scholar 

Kokosa JM. A guide to recent trends in green applications of liquid phase microextraction for bioanalytical sample preparations. Sustain Chem Pharm. 2021;22: 100478. https://doi.org/10.1016/j.scp.2021.100478.

Article  CAS  Google Scholar 

Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, de la Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – PART 1. TrAC Trends Anal Chem. 2023;162: 117034. https://doi.org/10.1016/j.trac.2023.117034.

Article  CAS  Google Scholar 

Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V. Solid-phase extraction of organic compounds: a critical review. Part ii TrAC Trends Anal Chem. 2016;80:655–67. https://doi.org/10.1016/j.trac.2015.08.014.

Article  CAS  Google Scholar 

Sajid M. Dispersive liquid-liquid microextraction: evolution in design, application areas, and green aspects. TrAC Trends Anal Chem. 2022;152: 116636. https://doi.org/10.1016/j.trac.2022.116636.

Article  CAS  Google Scholar 

Malik MI, Shaikh H, Mustafa G, Bhanger MI. Recent applications of molecularly imprinted polymers in analytical chemistry. Sep Purif Rev. 2019;48(3):179–219. https://doi.org/10.1080/15422119.2018.1457541.

Article  CAS  Google Scholar 

Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem. 2020;128: 115923. https://doi.org/10.1016/j.trac.2020.115923.

Article  CAS  Google Scholar 

BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119(1):94–119. https://doi.org/10.1021/acs.chemrev.8b00171.

Article  CAS  PubMed  Google Scholar 

Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis—a review. Tetrahedron. 2001;57(45):9225–83. https://doi.org/10.1016/S0040-4020(01)00906-1.

Article  Google Scholar 

Anwar J, Shafique U, Waheed uz Z, Rehman R, Salman M, Dar A, Anzano JM, Ashraf U, Ashraf S. Microwave chemistry: effect of ions on dielectric heating in microwave ovens. Arab J Chem. 2015;8(1):100–104. https://doi.org/10.1016/j.arabjc.2011.01.014.

Zhang X, Hayward DO. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorganica Chim Acta. 2006;359(11):3421–33. https://doi.org/10.1016/j.ica.2006.01.037.

Article  CAS  Google Scholar 

Bogdal D. Microwave-assisted polymerization. Polym Sci Compr Ref. 2012;981–1027. https://doi.org/10.1016/B978-0-444-53349-4.00121-7.

Tırıs G, Sare Yanıkoğlu R, Ceylan B, Egeli D, Kepekci Tekkeli E, Önal A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023;398: 133919. https://doi.org/10.1016/j.foodchem.2022.133919.

Article  CAS  PubMed  Google Scholar 

Jain A, Verma KK. Strategies in liquid chromatographic methods for the analysis of biogenic amines without and with derivatization. TrAC Trends Anal Chem. 2018;109:62–82. https://doi.org/10.1016/j.trac.2018.10.001.

Article  CAS  Google Scholar 

López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The ten principles of green sample preparation. TrAC Trends Anal Chem. 2022;148: 116530. https://doi.org/10.1016/j.trac.2022.116530.

Article  CAS  Google Scholar 

Cerutti S, Pacheco PH, Gil R, Martinez LD. Green sample preparation strategies for organic/inorganic compounds in environmental samples. Curr Opin Green Sustain Chem. 2019;19:76–86. https://doi.org/10.1016/j.cogsc.2019.08.007.

Article  Google Scholar 

Sajid M, Płotka-Wasylka J. “Green” nature of the process of derivatization in analytical sample preparation. TrAC Trends Anal Chem. 2018;102:16–31. https://doi.org/10.1016/j.trac.2018.01.005.

Article  CAS  Google Scholar 

Tsai C-J, Liao F-Y, Weng J-R, Feng C-H. Tandem derivatization combined with salting-out assisted liquid–liquid microextraction for determination of biothiols in urine by gas chromatography–mass spectrometry. J Chromatogr A. 2017;1524:29–36. https://doi.org/10.1016/j.chroma.2017.09.069.

Article  CAS  PubMed  Google Scholar 

Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J. Green chromatography. J Chromatogr A. 2013;1307:1–20. https://doi.org/10.1016/j.chroma.2013.07.099.

Article  CAS  PubMed  Google Scholar 

Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z, Zhou L. Greening analytical chromatography. TrAC Trends Anal Chem. 2010;29(7):667–80. https://doi.org/10.1016/j.trac.2010.03.008.

Article  CAS  Google Scholar 

Sadkowska J, Caban M, Chmielewski M, Stepnowski P, Kumirska J. Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix. Arch Environ Prot. 2017;43(3):3–9. https://doi.org/10.1515/aep-2017-0028.

Article  Google Scholar 

Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed. 2004;43(46):6250–84. https://doi.org/10.1002/anie.200400655.

Article  CAS  Google Scholar 

Santana APR, Mora-Vargas JA, Guimarães TGS, Amaral CDB, Oliveira A, Gonzalez MH. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J Mol Liq. 2019;293: 111452. https://doi.org/10.1016/j.molliq.2019.111452.

Article  CAS  Google Scholar 

Pakade V, Lindahl S, Chimuka L, Turner C. Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions. J Chromatogr A. 2012;1230:15–23. https://doi.org/10.1016/j.chroma.2012.01.051.

Article  CAS  PubMed  Google Scholar 

Sun H-w, Qiao F-x. Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography. J Chromatogr A. 2008;1212(1):1–9. https://doi.org/10.1016/j.chroma.2008.09.107.

Article  CAS  PubMed  Google Scholar 

Zhang H. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polym. 2014;55(3):699–714. https://doi.org/10.1016/j.polymer.2013.12.064.

Article  CAS  Google Scholar 

Cui Y, He Z, Xu Y, Su Y, Ding L, Li Y. Fabrication of molecularly imprinted polymers with tunable adsorption capability based on solvent-responsive cross-linker. Chem Eng J. 2021;405: 126608. https://doi.org/10.1016/j.cej.2020.126608.

Article  CAS  Google Scholar 

Joshi VP, Karmalkar RN, Kulkarni MG, Mashelkar RA. Effect of solvents on selectivity in separation using molecularly imprinted adsorbents: separation of phenol and bisphenol A. Ind Eng Chem Res. 1999;38(11):4417–4423. https://pubs.acs.org/doi/10.1021/ie990331o.

Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A. 2021;1637: 461822. https://doi.org/10.1016/j.chroma.2020.461822.

Article  CAS  PubMed  Google Scholar 

Sahebnasagh A, Karimi G, Mohajeri SA. Preparation and evaluation of histamine imprinted polymer as a selective sorbent in molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography analysis in canned fish. Food Anal Methods. 2014;7(1):1–8. https://link.springer.com/article/10.1007/s12161-013-9579-7.

Gao J, Yan L, Yan Y, Chen L, Lu J, Xing W, Yu C, Chen M, Meng M, Yan Y, Wu Y. Solvent-driven controllable molecularly imprinted membrane with switched selectivity and fast regenerability enabled by customized bifunctional monomers. Chem Eng J. 2022;446: 136991. https://doi.org/10.1016/j.cej.2022.136991.

Article  CAS  Google Scholar 

Fiamegos YC, Stalikas CD. Gas chromatographic determination of amino acids via one-step phase-transfer catalytic pentafluorobenzylation–preconcentration. J Chromatogr A. 2006;1110(1):66–72. https://doi.org/10.1016/j.chroma.2006.01.074.

Article  CAS  PubMed  Google Scholar 

Scheyer A, Morville S, Mirabel P, Millet M. A multiresidue method using ion-trap gas chromatography–tandem mass spectrometry with or without derivatisation with pentafluorobenzylbromide for the analysis of pesticides in the atmosphere. Anal Bioanal Chem. 2005;381(6):1226–1233. https://link.springer.com/article/10.1007/s00216-005-3060-4.

Abdelraheem EMH, Hassan SM, Arief MMH, Mohammad SG. Validation of quantitative method for azoxystrobin residues in green beans and peas. Food Chem. 2015;182:246–50. https://doi.org/10.1016/j.foodchem.2015.02.106.

Article  CAS  PubMed  Google Scholar 

Hasegawa K, Minakata K, Suzuki M, Suzuki O. The standard addition method and its validation in forensic toxicology. Forensic Toxicol. 2021;39 (2):311–333.

留言 (0)

沒有登入
gif