Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension

Levine, D. A., Springer, M. V. & Brodtmann, A. Blood pressure and vascular cognitive impairment. Stroke 53, 1104–1113 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Muntner, P. et al. Blood pressure control among us adults, 2009 to 2012 through 2017 to 2020. Hypertension 79, 1971–1980 (2022).

Article  CAS  PubMed  Google Scholar 

Carey, R. M., Sakhuja, S., Calhoun, D. A., Whelton, P. K. & Muntner, P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension 73, 424–431 (2019).

Article  CAS  PubMed  Google Scholar 

Williamson, J. D. et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321, 553–561 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Webb, A. J. S. & Werring, D. J. New insights into cerebrovascular pathophysiology and hypertension. Stroke 53, 1054–1064 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iadecola, C. & Gottesman, R. F. Neurovascular and cognitive dysfunction in hypertension: epidemiology, pathobiology and treatment. Circ. Res. 124, 1025–1044 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh, Y. S. et al. National Heart, Lung, and Blood Institute Working Group report on salt in human health and sickness: building on the current scientific evidence. Hypertension 68, 281–288 (2016).

Article  PubMed  Google Scholar 

Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

Article  CAS  PubMed  Google Scholar 

Grobe, J. L. et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension 57, 600–607 (2011).

Article  CAS  PubMed  Google Scholar 

Basting, T. & Lazartigues, E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 19, 32 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Meade, T. W., Imeson, J. D., Gordon, D. & Peart, W. S. The epidemiology of plasma renin. Clin. Sci. 64, 273–280 (1983).

Article  CAS  Google Scholar 

Alderman, M. H. et al. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N. Engl. J. Med. 324, 1098–1104 (1991).

Article  CAS  PubMed  Google Scholar 

Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

Article  CAS  PubMed  Google Scholar 

Yao, W., Sun, Y., Wang, X. & Niu, K. Elevated serum level of interleukin 17 in a population with prehypertension. J. Clin. Hypertens. 17, 770–774 (2015).

Article  CAS  Google Scholar 

Simundic, T. et al. Interleukin 17a and toll-like receptor 4 in patients with arterial hypertension. Kidney Blood Press. Res. 42, 99–108 (2017).

Article  CAS  PubMed  Google Scholar 

Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic Th17 cells. Nature 496, 518–522 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, C. et al. Induction of pathogenic Th17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

Article  CAS  PubMed  Google Scholar 

Faraco, G. et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J. Cereb. Blood Flow. Metab. 36, 241–252 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopp, C. et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61, 635–640 (2013).

Article  CAS  PubMed  Google Scholar 

Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated Th17 response. Nat. Neurosci. 21, 240–249 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toda, N., Ayajiki, K. & Okamura, T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharm. Rev. 61, 62–97 (2009).

Article  CAS  PubMed  Google Scholar 

Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54, e251–e271 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

Article  CAS  PubMed  Google Scholar 

Kim, S. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 132, 701–718 (2018).

Article  CAS  Google Scholar 

Esplugues, E. et al. Control of Th17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maeda, Y. et al. Il-17-producing vγ4+ γδ T cells require sphingosine 1-phosphate receptor 1 for their egress from the lymph nodes under homeostatic and inflammatory conditions. J. Immunol. 195, 1408–1416 (2015).

Article  CAS  PubMed  Google Scholar 

Korbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

Article  CAS  PubMed  Google Scholar 

El Malki, K. et al. An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J. Invest Dermatol. 133, 441–451 (2013).

Article  CAS  PubMed  Google Scholar 

Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikolakopoulou, A. M. et al. Endothelial LPR1 protects against neurodegeneration by blocking cyclophilin A. J. Exp. Med. 218, e20202207 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

Article  PubMed  Google Scholar 

Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer abeta peptides. Circ. Res. 121, 258–269 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sayd, A. et al. Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur. Neuropsychopharmacol. 34, 50–64 (2020).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif