Loss of Muscle Mass and Strength After Hip Fracture: an Intervention Target for Nutrition Supplementation

HCUPnet: http://hcupnet.ahrq.govexternal icon (2012). Accessed 1/30/2022 2022.

Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, Geweke JF, et al. The aftermath of hip fracture: discharge placement, functional status change, and mortality. Am J Epidemiol. 2009;170(10):1290–9.

Article  PubMed  PubMed Central  Google Scholar 

Magaziner J, Hawkes W, Hebel JR, Zimmerman SI, Fox KM, Dolan M, et al. Recovery from hip fracture in eight areas of function. J Gerontol A Biol Sci Med Sci. 2000;55(9):M498–507.

Article  CAS  PubMed  Google Scholar 

Dyer SM, Crotty M, Fairhall N, Magaziner J, Beaupre LA, Cameron ID, et al. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016;16(1):1–18.

Article  Google Scholar 

Hannan EL, Magaziner J, Wang JJ, Eastwood EA, Silberzweig SB, Gilbert M, et al. Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA. 2001;285(21):2736–42.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Chen S-Y, Lee Y-C, Wu N. Clinical and economic characteristics of hip fracture patients with and without muscle atrophy/weakness in the United States. Arch Osteoporos. 2013;8:1–10.

Article  Google Scholar 

Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. 2004;7(4):405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvani R, Martone AM, Marzetti E, Onder G, Savera G, Lorenzi M, et al. Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip-fractured patients. Front Aging Neurosci. 2014;6:269.

Article  PubMed  PubMed Central  Google Scholar 

Malafarina V, Reginster J-Y, Cabrerizo S, Bruyère O, Kanis JA, Martinez JA, et al. Nutritional status and nutritional treatment are related to outcomes and mortality in older adults with hip fracture. Nutrients. 2018;10(5):555.

Article  PubMed  PubMed Central  Google Scholar 

Karlsson M, Nilsson J, Sernbo I, Redlund-Johnell I, Johnell O, Obrant K. Changes of bone mineral mass and soft tissue composition after hip fracture. Bone. 1996;18(1):19–22.

Article  CAS  PubMed  Google Scholar 

Fox K, Magaziner J, Hawkes W, Yu-Yahiro J, Hebel J, Zimmerman S, et al. Loss of bone density and lean body mass after hip fracture. Osteoporos Int. 2000;11:31–5.

Article  CAS  PubMed  Google Scholar 

D’Adamo CR, Hawkes WG, Miller RR, Jones M, Hochberg M, Yu-Yahiro J, et al. Short-term changes in body composition after surgical repair of hip fracture. Age Ageing. 2014;43(2):275–80.

Article  PubMed  Google Scholar 

Kouw IW, Groen BB, Smeets JS, Kramer IF, van Kranenburg JM, Nilwik R, et al. One week of hospitalization following elective hip surgery induces substantial muscle atrophy in older patients. J Am Med Dir Assoc. 2019;20(1):35–42.

Article  PubMed  Google Scholar 

Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

Article  PubMed  Google Scholar 

Visser M, Harris TB, Fox KM, Hawkes W, Hebel JR, YuYahiro J, et al. Change in muscle mass and muscle strength after a hip fracture: relationship to mobility recovery. J Gerontol A Biol Sci Med Sci. 2000;55(8):M434–40.

Article  CAS  PubMed  Google Scholar 

Wehren LE, Hawkes WG, Hebel JR, Orwig DL, Magaziner J. Bone mineral density, soft tissue body composition, strength, and functioning after hip fracture. J Gerontol A Biol Sci Med Sci. 2005;60(1):80–4.

Article  PubMed  Google Scholar 

Di Monaco M, Castiglioni C, De Toma E, Gardin L, Giordano S, Di Monaco R, et al. Handgrip strength but not appendicular lean mass is an independent predictor of functional outcome in hip-fracture women: a short-term prospective study. Arch Phys Med Rehabil. 2014;95(9):1719–24.

Article  PubMed  Google Scholar 

Rantanen T, Era P, Kauppinen M, Heikkinen E. Maximal isometric muscle strength and socioeconomic status, health, and physical activity in 75-year-old persons. J Aging Phys Act. 1994;2(3):206–20.

Article  Google Scholar 

Geusens P, Vandevyver C, Vanhoof J, Cassiman JJ, Boonen S, Raus J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res. 1997;12(12):2082–8.

Article  CAS  PubMed  Google Scholar 

Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A. Muscle mass and functional recovery in women with hip fracture. Am J Phys Med Rehabil. 2006;85(3):209–15.

Article  PubMed  Google Scholar 

Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A. Muscle mass and functional recovery in men with hip fracture. Am J Phys Med Rehabil. 2007;86(10):818–25.

Article  PubMed  Google Scholar 

Omsland TK, Emaus N, Tell GS, Magnus JH, Ahmed LA, Holvik K, et al. Mortality following the first hip fracture in Norwegian women and men (1999–2008) A NOREPOS study. Bone. 2014;63:81–6.

Article  PubMed  Google Scholar 

Chen Y-P, Wong P-K, Tsai M-J, Chang W-C, Hsieh T-S, Leu T-H, et al. The high prevalence of sarcopenia and its associated outcomes following hip surgery in Taiwanese geriatric patients with a hip fracture. J Formos Med Assoc. 2020;119(12):1807–16.

Article  PubMed  Google Scholar 

Irisawa H, Mizushima T. Relationship between nutritional status, body composition, muscle strength, and functional recovery in patients with proximal femur fracture. Nutrients. 2022;14(11):2298. This study showed that absence of malnutrition and high muscle strength were significantly associated with higher odds of functional recovery after hip fracture. There was no association between high skeletal lean mass and function.

Willey MO, EC; Miller A; Glass, N; Kirkpatrick, T; Fitzpatrick, D; Wilken, J; Marsh, JL; Reider, L. Substantial loss of skeletal muscle mass occurs after femoral fragility fracture. J Bone Joint Surg Am volume. 2023. This study, recently accepted for publication in JBJS, showed that women lose 9% skeletal muscle mass in the 6 weeks post fracture with greater loss among women with normal nutrition at time of injury, indicating that future investigations of interventions to prevent muscle loss should focus on older adults regardless of nutritional status.

Koch B, Miller A, Glass NA, Owen E, Kirkpatrick T, Grossman R, et al. Reliability of multifrequency bioelectrical impedance analysis to quantify body composition in patients after musculoskeletal trauma. Iowa Orthop J. 2022;42(1):75. Measures of body composition with bioelectrical impedance analysis following operative treatment of musculoskeletal injuries have high interrater reliability. Results demonstrate that BIA is a reliable approach for assessing changes in body composition in an orthopedic trauma population for both research and clinical endeavors.

Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol. 2000;89(2):465–71.

Article  CAS  PubMed  Google Scholar 

van den Helder J, Verreijen AM, van Dronkelaar C, Memelink RG, Engberink MF, Engelbert RH, et al. Bio-electrical impedance analysis: a valid assessment tool for diagnosis of low appendicular lean mass in older adults? Front Nutr. 2022;9:874980.

Article  PubMed  PubMed Central  Google Scholar 

Hurt RT, Ebbert JO, Croghan I, Nanda S, Schroeder DR, Teigen LM, et al. The comparison of segmental multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating fat free mass and percentage body fat in an ambulatory population. J Parenter Enter Nutr. 2021;45(6):1231–8.

Article  CAS  Google Scholar 

Yi Y, Baek JY, Lee E, Jung H-W, Jang I-Y. A comparative study of high-frequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating body composition. Life. 2022;12(7):994.

Article  PubMed  PubMed Central  Google Scholar 

Khan S, Xanthakos SA, Hornung L, Arce-Clachar C, Siegel R, Kalkwarf HJ. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity. J Pediatr Gastroenterol Nutr. 2020;70(6):e129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Addison O, Marcus RL, LaStayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. 2014:11.https://doi.org/10.1155/2014/309570

Schautz B, Later W, Heller M, Müller M, Bosy-Westphal A. Total and regional relationship between lean and fat mass with increasing adiposity—impact for the diagnosis of sarcopenic obesity. Eur J Clin Nutr. 2012;66(12):1356–61.

Article  CAS  PubMed  Google Scholar 

Wang Z, Deurenberg P, Heymsfield SB. Cellular-level body composition model: a new approach to studying fat-free mass hydration. Ann N Y Acad Sci. 2000;904(1):306–11.

Article  CAS  PubMed  Google Scholar 

Bosy-Westphal A, Jensen B, Braun W, Pourhassan M, Gallagher D, Müller M. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr. 2017;71(9):1061–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cawthon PM, Orwoll ES, Peters KE, Ensrud KE, Cauley JA, Kado DM, et al. Strong relation between muscle mass determined by D3-creatine dilution, physical performance, and incidence of falls and mobility limitations in a prospective cohort of older men. J Gerontol: Series A. 2019;74(6):844–52.

Article  Google Scholar 

Zhu K, Wactawski-Wende J, Ochs-Balcom HM, LaMonte MJ, Hovey KM, Evans W, et al. The association of muscle mass measured by D3-creatine dilution method with dual-energy x-ray absorptiometry and physical function in postmenopausal women. J Gerontol: Series A. 2021;76(9):1591–9. D3 creatinine is a relatively new minimally invasive approach to measuring muscle mass and is not influenced by hydration state which is a potential advantage over DXA and BIA. Accurate noninvasive measures of lean mass are needed to better understand recovery after hip fracture and the relative importance of lean mass and muscle strength on functional outcomes.

Hendrickson N, Davison J, Schiller L, Willey M. Reliability and validity of A-mode ultrasound to quantify body composition. J Orthop Trauma. 2019;33(9):472–7.

Article  PubMed  Google Scholar 

Hendrickson NR, Davison J, Glass NA, Wilson ES, Miller A, Leary S, et al. Conditionally essential amino acid supplementation reduces postoperative complications and muscle wasting after fracture fixation: a randomized controlled trial. JBJS. 2022;104(9):759–66. Patients randomized to conditionally essential amino acid supplementation following surgical fixation for pelvic and extremity fractures had less lean mass loss and fewer complications compared with patients randomized to usual care. Essential amino acid supplementation is a low-cost, low-risk intervention that could potentially improve outcomes following orthopedic trauma.

Canales C, Mazor E, Coy H, Grogan TR, Duval V, Raman S, et al. Preoperative point-of-care ultrasound to identify frailty and predict postoperative outcomes: a diagnostic accuracy study. Anesthesiology. 2022;136(2):268–78.

Article  PubMed  Google Scholar 

Di Monaco M, Castiglioni C, Bardesono F, Milano E, Massazza G. A New Threshold for appendicular lean mass discriminates muscle weakness in women with hip fracture: a cross-sectional study. Am J Phys Med Rehabil. 2019;98(11):1005–9.

Article  PubMed  Google Scholar 

Kim HS, Park JW, Lee YK, Yoo JI, Choi YS, Yoon BH, et al. Prevalence of sarcopenia and mortality rate in older adults with hip fracture. J Am Geriatr Soc. 2022;70(8):2379–85.

留言 (0)

沒有登入
gif