Epigenetic programming for obesity and noncommunicable disease: From womb to tomb

Kermack WO, McKendrick AG, McKinlay PL. Death-rates in great britain and sweden: expression of specific mortality rates as products of two factors, and some consequences thereof. J Hyg (Lond) [Internet]. 1934[cited 2022 May 22];34:433–57. https://doi.org/10.1017/S0022172400043230.

Nettle D, Bateson M. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? Proc R Soc B Biol Sci [Internet]. 2015[cited 2022 May 22];282:1–9. https://doi.org/10.1098/rspb.2015.1005.

Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev [Internet]. 2014[cited 2021 Mar 27];94:1027–76. https://doi.org/10.1152/physrev.00029.2013.

Suzuki K. The developing world of DOHaD. J Dev Orig Health Dis [Internet]. 2018;9:266–9. https://doi.org/10.1017/S2040174417000691.

Article  PubMed  CAS  Google Scholar 

Deichmann U. Epigenetics: The origins and evolution of a fashionable topic. Dev Biol [Internet]. 2016[cited 2022 May 20];416:249–54. https://doi.org/10.1016/j.ydbio.2016.06.005.

Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol [Internet]. 2015[cited 2022 May 20];218:816–8. https://doi.org/10.1242/jeb.120071.

de Sousa MC, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci [Internet]. 2019[cited 2022 May 22];20:1–22. https://doi.org/10.3390/ijms20246249.

Godfrey KM, Costello PM, Lillycrop KA. Development, epigenetics and metabolic programming. Nestle Nutr Inst Workshop Ser [Internet]. 2016[cited 2022 May 22];85:71–80. https://doi.org/10.1159/000439488.

Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet [Internet]. 2018[cited 2022 May 19];391:1842–52. https://doi.org/10.1016/S0140-6736(18)30312-X.

Lancet. Campaigning for preconception health. Lancet [Internet]. 2018[cited 2022 May 20];391:1749. https://doi.org/10.1016/S0140-6736(18)30981-4.

Hales BF, Grenier L, Lalancette C, Robaire B. Epigenetic programming: From gametes to blastocyst. Birth Defects Res Part A Clin Mol Teratol [Internet]. 2011[cited 2022 May 20];91:652–65. https://doi.org/10.1002/bdra.20781.

Wasserzug-Pash P, Klutstein M. Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma [Internet]. 2019[cited 2022 May 21];128:423–441. https://doi.org/10.1007/s00412-019-00704-w.

Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet [Internet]. 2012[cited 2022 May 19];13:153–62. https://doi.org/10.1038/nrg3188.

Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature [Internet]. 2018[cited 2022 May 20];555:392–6. https://doi.org/10.1038/nature25964.

Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology [Internet]. 2020[cited 2022 May 21];8:924–42. https://doi.org/10.1111/andr.12753.

Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol [Internet]. 2020[cited 2022 May 20];518:1–16. https://doi.org/10.1016/j.mce.2020.110964.

Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia [Internet]. 2021[cited 2022 May 20];53:1–15. https://doi.org/10.1111/and.13586.

Funaya S, Ooga M, Suzuki MG, Aoki F. Linker histone H1FOO regulates the chromatin structure in mouse zygotes. FEBS Lett [Internet]. 2018[cited 2022 May 20];592:2414–24. https://doi.org/10.1002/1873-3468.13175.

Smallwood SA, Tomizawa SI, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet [Internet]. 2011[cited 2022 May 21];43:811–4. https://doi.org/10.1038/ng.864.

Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update [Internet]. 2015[cited 2022 May 21];21:194–208. https://doi.org/10.1093/humupd/dmu061.

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. PNAS [Internet]. 2008[cited 2022 May 20];105:17046–9. https://doi.org/10.1073/pnas.0806560105.

Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J. Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am J Clin Nutr [Internet]. 2010[cited 2022 May 21];91:1560–7. https://doi.org/10.3945/ajcn.2009.28838.

Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, et al. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect [Internet]. 2014[cited 2022 May 20];122:159–64. https://doi.org/10.1289/ehp.1307047.

Gorla-Bajszczak A, Juge-Aubry C, Pernin A, Burger AG, Meier CA. Conserved amino acids in the ligand-binding and τ(i) domains of the peroxisome proliferator-activated receptor α are necessary for heterodimerization with RXR. Mol Cell Endocrinol [Internet]. 1999[cited 2022 May 20];147:37–47. https://doi.org/10.1016/S0303-7207(98)00217-2.

Rigano D, Sirignano C, Taglialatela-scafati O. The potential of natural products for targeting PPAR α. Acta Pharm Sin B [Internet]. 2017[cited 2022 May 21];7:427–38. https://doi.org/10.1016/j.apsb.2017.05.005.

Portha B, Grandjean V, Movassat J. Mother or father: who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients [Internet]. 2019[cited 2022 May 16];11:1–23. https://doi.org/10.3390/nu11020233.

Franklin TB, Russig H, Weiss IC, Grff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry [Internet]. 2010[cited 2022 May 20];68:408–15. https://doi.org/10.1016/j.biopsych.2010.05.036.

Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, et al. Proposed key characteristics of female reproductive toxicants as an approach for organizing and evaluating mechanistic data in hazard assessment. Environ Health Perspect [Internet]. 2019[cited 2022 May 20];127:075001-1-075001–14. https://doi.org/10.1289/EHP4971.

Stephenson J, Heslehurst N, Hall J, Schoenaker DAJM, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet [Internet]. 2018[cited 2022 May 21];391:1830–41. https://doi.org/10.1016/S0140-6736(18)30311-8.

Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science [Internet]. 2016;351:397–400. http://www.ncbi.nlm.nih.gov/pubmed/26721680.

Sarker G, Sun W, Rosenkranz D, Pelczar P, Opitz L, Efthymiou V, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci [Internet]. 2019;116:10547–56. https://pnas.org/doi/full/10.1073/pnas.1820810116.

Pentecost M, Meloni M. “It’s never too early”: preconception care and postgenomic models of life. Front Sociol [Internet]. 2020[cited 2022 May 21];5:1–13. https://doi.org/10.3389/fsoc.2020.00021.

Barker DJP, Eriksson JG, Forsén TJ, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol [Internet]. 2002[cited 2022 May 16];31:1235–9. https://doi.org/10.1093/ije/31.6.1235.

Barker DJP. Developmental origins of adult health and disease. J Epidemiol Community Heal [Internet]. 2004[cited 2021 Feb 22];58:114–5. https://doi.org/10.1136/jech.58.2.114.

Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr [Internet]. 2005[cited 2022 May 20];135:1382–6. https://doi.org/10.1093/jn/135.6.1382.

McCormick CM, Smythe JW, Sharma S, Meaney MJ. Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Dev Brain Res [Internet]. 1995[cited 2022 May 21];84:55–61. https://doi.org/10.1016/0165-3806(94)00153-Q.

Liu L, Li A, Matthews SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab [Internet]. 2001[cited 2022 May 20];280:E729–39. https://doi.org/10.1152/ajpendo.2001.280.5.e729.

Ravelli ACJ, Van Der Meulen JHP, Michels RPJ, Osmond C, Barker DJP, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet [Internet]. 1998[cited 2022 Sep 13];351:173–7. https://doi.org/10.1016/S0140-6736(97)07244-9.

De Oliveira JC, Gomes RM, Miranda RA, Barella LF, Malta A, Martins IP, et al. Protein restriction during the last third of pregnancy malprograms the neuroendocrine axes to induce metabolic syndrome in adult male rat offspring. Endocrinology [Internet]. 2016[cited 2022 May 19];157:1799–812. https://doi.org/10.1210/en.2015-1883.

Zambrano E, Bautista CJ, Deás M, Martínez-Samayoa PM, González-Zamorano M, Ledesma H, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol [Internet]. 2006[cited 2022 May 21];571:221–30. https://doi.org/10.1113/jphysiol.2005.100313.

Rossini KF, de Oliveira CA, Rebelato HJ, Esquisatto MAM, Catisti R. Gestational protein restriction increases cardiac connexin 43 mRNA levels in male adult rat offspring. Arq Bras Cardiol [Internet]. 2017[cited 2022 May 21];109:63–70. https://doi.org/10.5935/abc.20170081.

Assalin HB, Gontijo JAR, Boer PA. MiRNAs, target genes expression and morphological analysis on the heart in gestational protein-restricted offspring. PLoS ONE [Internet]. 2019[cited 2022 May 16];14:1–20. https://doi.org/10.1371/journal.pone.0210454.

Jousse C, Muranishi Y, Parry L, Montaurier C, Even P, Launay JM, et al. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity. PLoS ONE [Internet]. 2014;9:1–9. https://doi.org/10.1371/journal.pone.0104896.

Article  CAS  Google Scholar 

Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart [Internet]. 2015[cited 2022 May 21];101:921–8. https://doi.org/10.1136/heartjnl-2013-305402.

Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol [Internet]. 2009[cited 2022 May 21];297:1516–25. https://doi.org/10.1152/ajpregu.00280.2009.

Siqueira FR, Furukawa LNS, Oliveira IB, Heimann JC. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy. Physiol Behav [Internet]. 2016[cited 2022 May 21];154:68–75. https://doi.org/10.1016/j.physbeh.2015.11.013.

Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol [Internet]. 2014[cited 2022 May 19];211:237.e1–13. https://doi.org/10.1016/j.ajog.2014.03.025.

Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet [Internet]. 2016[cited 2022 May 21];387:475–90. https://doi.org/10.1016/S0140-6736(15)01024-7.

Gomes RM, Bueno FG, Oliveira, Francisco FA, Moreira VM, Divino M, et al. Maternal diet-induced obesity during suckling period programs offspring obese phenotype and hypothalamic leptin/insulin resistance. J Nutr Biochem [Internet]. 2018[cited 2022 May 20];61:24–32. https://doi.org/10.1016/j.jnutbio.2018.07.006.

Almeida DL, Pavanello A, Saavedra LP, Pereira TS, De Castro-Prado MAA, De Freitas Mathias PC. Environmental monitoring and the developmental origins of health and disease. J Dev Orig Health Dis [Internet]. 2019[cited 2022 May 7];10:608–15. https://pubmed.ncbi.nlm.nih.gov/31130151/.

Butruille L, Marousez L, Pourpe C, Oger F, Lecoutre S, Catheline D, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes [Internet]. 2019;43:2381–93. https://doi.org/10.1038/s41366-018-0310-z.

Article  CAS  Google Scholar 

Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest [Internet]. 2021[cited 2022 May 7];51:1–14. https://doi.org/10.1111/ECI.13482.

WHO. Health topics: Breastfeeding. World Heal Organ [Internet]. 2021[cited 2022 May 21]. https://www.who.int/health-topics/breastfeeding.

Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature [Internet]. 2000[cited 2022 May 21];404:661–71. http://www.nature.com/articles/35007534.

Obermann-Borst SA, Eilers PHC, Tobi EW, De Jong FH, Slagboom PE, Heijmans BT, et al. Duration of breastfeeding and gender are associated with methylation of The LEPTIN gene in very young children. Pediatr Res [Internet]. 2013[cited 2022 May 21];74:344–9. https://doi.org/10.1038/pr.2013.95.

Sherwood WB, Bion V, Lockett GA, Ziyab AH, Soto-Ramírez N, Mukherjee N, et al. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin Epigenetics [Internet]. 2019[cited 2022 May 21];11:1–10. https://doi.org/10.1186/s13148-019-0727-9.

Pauwels S, Symons L, Vanautgaerden EL, Ghosh M, Duca RC, Bekaert B, et al. The influence of the duration of breastfeeding on the infant’s metabolic epigenome. Nutrients [Internet]. 2019[cited 2022 May 21];11:1–14. https://doi.org/10.3390/nu11061408.

Hartwig FP, Loret de Mola C, Davies NM, Victora CG, Relton CL. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS ONE [Internet]. 2017;12:e0173070. https://dx.plos.org/10.1371/journal.pone.0175604.

Hashimoto K, Ogawa Y. Epigenetic switching and neonatal nutritional environment. In: Kubota T, Fukuoka H, editors. Adv Exp Med Biol [Internet]. Springer Nature Singapore Pte Ltd; 2018[cited 2022 May 20]. p. 19–25. https://doi.org/10.1007/978-981-10-5526-3_3.

Ehara T, Kamei Y, Yuan X, Takahashi M, Kanai S, Tamura E, et al. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver. Diabetes [Internet]. 2015[cited 2022 May 19];64:775–84. https://doi.org/10.2337/db14-0158.

Cheshmeh S, Nachvak SM, Rezvani N, Saber A. Effects of breastfeeding and formula feeding on the expression level of FTO, CPT1A and PPAR-α genes in healthy infants. Diabetes Metab Syndr Obes Targets Ther [Internet]. 2020;13:2227–37. https://www.dovepress.com/effects-of-breastfeeding-and-formula-feeding-on-the-expression-level-o-peer-reviewed-article-DMSO.

Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun [Internet]. 2018;9. https://doi.org/10.1038/s41467-018-03038-w.

Fisher FM, Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol [Internet]. 2016;78:223–41. http://www.annualreviews.org/doi/10.1146/annurev-physiol-021115-105339.

Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun [Internet]. 2018[cited 2022 May 21];9:636. https://doi.org/10.1038/s41467-018-03038-w.

Hollstein T, Basolo A, Ando T, Votruba SB, Walter M, Krakoff J, et al. Recharacterizing the metabolic state of energy balance in thrifty and spendthrift phenotypes. J Clin Endocrinol Metab [Internet]. 2020;105:1375–92. https://academic.oup.com/jcem/article/105/5/1375/5771299.

Ehara T, Kamei Y, Takahashi M, Yuan X, Kanai S, Tamura E, et al. Role of DNA methylation in the regulation of lipogenic glycerol-3-phosphate acyltransferase 1 gene expression in the mouse neonatal liver. Diabetes [Internet]. 2012[cited 2022 May 19];61:2442–50. https://doi.org/10.2337/db11-1834.

Srinivasan M, Mitrani P, Sadhanandan G, Dodds C, Shbeir-ElDika S, Thamotharan S, et al. A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol [Internet]. 2008[cited 2022 May 21];197:565–74. https://doi.org/10.1677/JOE-08-0021.

Mahmood S, Smiraglia DJ, Srinivasan M, Patel MS. Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J Dev Orig Health Dis [Internet]. 2013[cited 2022 May 21];4:479–90. https://www.cambridge.org/core/product/identifier/S2040174413000238/type/journal_article.

Dimova LG, de Boer JF, Plantinga J, Plösch T, Hoekstra M, Verkade HJ, et al. Inhibiting cholesterol absorption during lactation programs future intestinal absorption of cholesterol in adult mice. Gastroenterology [Internet]. 2017;153:382-385.e3. https://doi.org/10.1053/j.gastro.2017.04.019.

Article  PubMed  Google Scholar 

Cordero P, Milagro FI, Campion J, Martinez JA. Supplementation with methyl donors during lactation to high-fat-sucrose-fed dams protects offspring against liver fat accumulation when consuming an obesogenic diet. J Dev Orig Health Dis [Internet]. 2014[cited 2022 May 19];5:385–95. https://doi.org/10.1017/S204017441400035X.

Mehedint MG, Craciunescu CN, Zeisel SH. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci [Internet]. 2010;107:12834–9. http://www.pnas.org/cgi/doi/10.1073/pnas.0914328107.

Garcia MM, Guéant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J Pathol [Internet]. 2011[cited 2022 May 20];225:324–35. https://doi.org/10.1002/path.2881.

Pellanda H, Forges T, Bressenot A, Chango A, Bronowicki JP, Guéant JL, et al. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses. Mol Nutr Food Res [Internet]. 2012[cited 2022 May 21];56:976–85. http://doi.wiley.com/10.1002/mnfr.201100640.

Saber Cherif L, Pourié G, Geoffroy A, Julien A, Helle D, Robert A, et al. Methyl donor deficiency during gestation and lactation in the rat affects the expression of neuropeptides and related receptors in the hypothalamus. Int J Mol Sci [Internet]. 2019;20:1–13. https://doi.org/10.3390/ijms20205097.

Article  CAS  Google Scholar 

Shamir R, Shehadeh N. Insulin in human milk and the use of hormones in infant formulas. Nestle Nutr Inst Workshop Ser [Internet]. 2013;57–64. https://doi.org/10.1159/000351384.

Gavaldà-Navarro A, Hondares E, Giralt M, Mampel T, Iglesias R, Villarroya F. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci Rep [Internet]. 2015[cited 2022 May 20];5:1–13. https://doi.org/10.1038/srep13717.

Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev [Internet]. 2018[cited 2022 May 23];76:875–92. https://doi.org/10.1093/nutrit/nuy046.

Schuster S, Hechler C, Gebauer C, Kiess W, Kratzsch J. Leptin in maternal serum and breast milk: Association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr Res [Internet]. 2011;70:633–7. https://www.nature.com/doifinder/10.1203/PDR.0b013e31823214ea.

Çağiran Yilmaz F, Özçelik AÖ. The relationships between leptin levels in maternal serum and breast milk of mothers and term infants. Ann Med [Internet]. 2021;53:1310–6. https://www.tandfonline.com/doi/full/10.1080/07853890.2021.1964037.

Miralles O, Sánchez J, Palou A, Picó C. A physiological role of breast milk leptin in body weight control in developing infants*. Obesity [Internet]. 2006;14:1371–7. http://doi.wiley.com/10.1038/oby.2006.155.

Houseknecht KL, McGuire MK, Portocarrero CP, McGuire MA, Beerman K. Leptin is present in human milk and is related to maternal plasma leptin concentration and adiposity. Biochem Biophys Res Commun [Internet]. 1997;240:742–7. https://linkinghub.elsevier.com/retrieve/pii/S0006291X97977366.

Doneray H, Orbak Z, Yildiz L. The relationship between breast milk leptin and neonatal weight gain. Acta Paediatr [Internet]. 2009;98:643–7. https://onlinelibrary.wiley.com/doi/10.1111/j.1651-2227.2008.01192.x.

Priego T, Sánchez J, Palou A, Picó C. Leptin intake during the suckling period improves the metabolic response of adipose tissue to a high-fat diet. Int J Obes [Internet]. 2010;34:809–19. https://www.nature.com/articles/ijo201018.

Picó C, Oliver P, Sánchez J, Miralles O, Caimari A, Priego T, et al. The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int J Obes [Internet]. 2007;31:1199–209. https://www.nature.com/articles/0803585.

Sánchez J, Priego T, Palou M, Tobaruela A, Palou A, Picó C. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology [Internet]. 2008;149:733–40. https://academic.oup.com/endo/article/149/2/733/2454843.

Liao Y, Du X, Li J, Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res [Internet]. 2017[cited 2022 May 20];61:1–11. https://doi.org/10.1002/mnfr.201700082.

Melnik B, Schmitz G. Milk’s role as an epigenetic regulator in health and disease. Diseases [Internet]. 2017[cited 2022 May 21];5:12. https://doi.org/10.3390/diseases5010012.

Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep [Internet]. 2018[cited 2022 May 21];8:1–11. https://doi.org/10.1038/s41598-018-29780-1.

Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr [Internet]. 2014[cited 2022 May 16];144:1495–500. https://doi.org/10.3945/jn.114.196436.

Melnik B. Milk: An epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med [Internet]. 2015[cited 2022 May 21];13:1–22. https://doi.org/10.1186/s12967-015-0746-z.

Widén E, Silventoinen K, Sovio U, Ripatti S, Cousminer DL, Hartikainen AL, et al. Pubertal timing and growth influences cardiometabolic risk factors in adult males and females. Diabetes Care [Internet]. 2012[cited 2022 May 21];35:850–6. https://doi.org/10.2337/dc11-1365.

De Oliveira JC, Lisboa PC, de Moura EG, Barella LF, Miranda RA, Malta A, et al. Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. J Endocrinol [Internet]. 2013[cited 2022 May 19];216:195–206. https://doi.org/10.1530/JOE-12-0408.

Blakemore SJ, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry [Internet]. 2006[cited 2022 May 16];47:296–312. https://doi.org/10.1111/j.1469-7610.2006.01611.x.

Perrin JS, Hervé PY, Leonard G, Perron M, Pike GB, Pitiot A, et al. Growth of white matter in the adolescent brain: role of testosterone and androgen receptor. J Neurosci [Internet]. 2008[cited 2022 May 21];28:9519 –24. https://doi.org/10.1523/JNEUROSCI.1212-08.2008.

Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience [Internet]. 2014[cited 2022 May 21];264:17–24. https://doi.org/10.1016/j.neuroscience.2013.11.014.

Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol [Internet]. 2018 [cited 2022 May 21];48:37–49. https://doi.org/10.1016/j.yfrne.2017.07.008.

Vazquez MJ, Velasco I, Tena-Sempere M. Novel mechanisms for the metabolic control of puberty: Implications for pubertal alterations in early-onset obesity and malnutrition. J Endocrinol [Internet]. 2019[cited 2022 May 21];242:R51–65.

留言 (0)

沒有登入
gif