Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, Mozaffarian D, Swinburn B, Ezzati M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231–40. https://doi.org/10.1016/S2213-8587(19)30026-9.
Article PubMed PubMed Central Google Scholar
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242–58. https://doi.org/10.1038/s41580-018-0093-z.
Article CAS PubMed Google Scholar
Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global obesity pandemic: Shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14. https://doi.org/10.1016/S0140-6736(11)60813-1.
Whitehead A, Krause FN, Moran A, MacCannell ADV, Scragg JL, McNally BD, Boateng E, Murfitt SA, Virtue S, Wright J, et al. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun. 2021;12(1):1905. https://doi.org/10.1038/s41467-021-22272-3.
Article CAS PubMed PubMed Central ADS Google Scholar
Kurylowicz A, Puzianowska-Kuznicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020;21(17):6241. https://doi.org/10.3390/ijms21176241.
Article CAS PubMed PubMed Central Google Scholar
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94. https://doi.org/10.1016/j.cell.2014.03.008.
Article CAS PubMed Google Scholar
Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. https://doi.org/10.1038/nature05874.
Article CAS ADS Google Scholar
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. Elife. 2020;9:e59053. https://doi.org/10.7554/eLife.59053.
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W. Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep. 2016;6:28897. https://doi.org/10.1038/srep28897.
Article CAS PubMed PubMed Central ADS Google Scholar
Long J-K, Dai W, Zheng Y-W, Zhao S-P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med. 2019;25(1):26. https://doi.org/10.1186/s10020-019-0085-2.
Article CAS PubMed PubMed Central Google Scholar
Xu G, Li M, Wu J, Qin C, Tao Y, He H. Circular RNA circNRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 2020;12:2789–802. https://doi.org/10.2147/CMAR.S246272.
Article CAS PubMed PubMed Central Google Scholar
Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, Ruiz JR. Activation of brown adipose tissue and promotion of white adipose tissue browning by plant-based dietary components in rodents: A systematic review. Adv Nutr. 2021;12:2147–56. https://doi.org/10.1093/advances/nmab084.
Article PubMed PubMed Central Google Scholar
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–24. https://doi.org/10.1038/s41574-019-0230-6.
Article CAS PubMed Google Scholar
Auger C, Kajimura S. Adipose tissue remodeling in pathophysiology. Annu Rev Pathol. 2023;18:71–93. https://doi.org/10.1146/annurev-pathol-042220-023633.
Article CAS PubMed Google Scholar
Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10:24–36. https://doi.org/10.1038/nrendo.2013.204.
Article CAS PubMed Google Scholar
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495:379–83. https://doi.org/10.1038/nature11943.
Article CAS PubMed PubMed Central ADS Google Scholar
Rui L. Brown and beige adipose tissues in health and disease. Compr Physiol. 2017;7:1281–306. https://doi.org/10.1002/cphy.c170001.
Article PubMed PubMed Central Google Scholar
Chen Y, Wu Z, Huang S, Wang X, He S, Liu L, Hu Y, Chen L, Chen P, Liu S, et al. Adipocyte IRE1alpha promotes PGC1alpha mRNA decay and restrains adaptive thermogenesis. Nat Metab. 2022;4:1166–84. https://doi.org/10.1038/s42255-022-00631-8.
Article CAS PubMed ADS Google Scholar
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23:1454–65. https://doi.org/10.1038/nm.4429.
Article CAS PubMed PubMed Central Google Scholar
Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993;366:740–2. https://doi.org/10.1038/366740a0.
Article CAS PubMed ADS Google Scholar
Sidossis L, Kajimura S. Brown and beige fat in humans: Thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86. https://doi.org/10.1172/JCI78362.
Article PubMed PubMed Central Google Scholar
Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring). 2011;19:1755–60. https://doi.org/10.1038/oby.2011.125.
Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol (Lausanne). 2019;10:137. https://doi.org/10.3389/fendo.2019.00137.
Rogers NH. Brown adipose tissue during puberty and with aging. Ann Med. 2015;47:142–9. https://doi.org/10.3109/07853890.2014.914807.
Article CAS PubMed Google Scholar
Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, et al. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell. 2022;185(949–966):e919. https://doi.org/10.1016/j.cell.2022.02.004.
Wang L, Liu X, Liu S, Niu Y, Fu L. Sestrin2 ablation attenuates the exercise-induced browning of white adipose tissue in C57BL/6J mice. Acta Physiol (Oxf). 2022;234:e13785. https://doi.org/10.1111/apha.13785.
Article CAS PubMed Google Scholar
Song Y, Zan W, Qin L, Han S, Ye L, Wang M, Jiang B, Fang P, Liu Q, Shao C. Ablation of ORMDL3 impairs adipose tissue thermogenesis and insulin sensitivity by increasing ceramide generation. Mol Metabol. 2022;56:101423. https://doi.org/10.1016/j.molmet.2021.101423.
Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: Is browning a new approach to the treatment of obesity? Arch Med Res. 2017;48:401–13. https://doi.org/10.1016/j.arcmed.2017.10.002.
Article CAS PubMed Google Scholar
Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: Physiological roles beyond heat generation. Cell Metab. 2015;22:546–59. https://doi.org/10.1016/j.cmet.2015.09.007.
Article CAS PubMed PubMed Central Google Scholar
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5. https://doi.org/10.1038/nm.2297.
Article CAS PubMed Google Scholar
Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab. 2010;11:257–62. https://doi.org/10.1016/j.cmet.2010.03.005.
Article CAS PubMed PubMed Central Google Scholar
Stanford KI, Middelbeek RJ, Goodyear LJ. Erratum. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes. 2015;64:2361–2368. Diabetes 64:3334. https://doi.org/10.2337/db15-er09.
Comments (0)